Cauchy-Folgen/Q/Ideal/Nullfolgenäquivalenz/Bemerkung

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Im Cauchy-Folgenring ist die durch das Nullfolgenideal gegebene Äquivalenzrelation einfach zu verstehen. Zwei Cauchy-Folgen und sind äquivalent, wenn ihre Differenzfolge, also die durch

gegebene Folge, eine Nullfolge ist. Insbesondere sind alle Nullfolgen zur konstanten Nullfolge äquivalent. Wenn man an die Vorstellung denkt, dass eine Cauchy-Folge eine Lücke innerhalb der rationalen Zahlen entdeckt oder lokalisiert, so bedeutet die Äquivalenz von zwei Cauchy-Folgen, dass sie die gleiche Lücke lokalisieren. Man kann also erkennen, ob zwei Cauchy-Folgen die gleiche Lücke adressieren, auch wenn man die Lücke gar nicht kennt.