Zum Inhalt springen

Charaktere auf Monoid/Lemma von Dedekind/Fakt/Beweis

Aus Wikiversity
Beweis

Es sei

wobei die verschiedene Charaktere seien und alle von verschieden seien. Darüber hinaus sei minimal gewählt mit dieser Eigenschaft. Wegen ist ein einzelner Charakter nicht die Nullabbildung, also linear unabhängig und somit ist zumindest . Wegen gibt es auch ein mit

. Wir behaupten die Gleichheit (wieder von Abbildungen von nach )

Für ein beliebiges ist nämlich

wegen der Ausgangsgleichung. Wenn man vom -fachen der Ausgangsgleichung die zweite Gleichung abzieht, so kann man elimineren und erhält eine nichttriviale (wegen und der Wahl von ) lineare Relation zwischen im Widerspruch zur Minimalitätseigenschaft von .