Zum Inhalt springen

Division mit Rest/Z/Fakt/Beweis

Aus Wikiversity
Beweis

Zur Existenz. Bei ist eine Lösung. Es sei positiv. Da positiv ist, gibt es ein Vielfaches . Daher gibt es auch eine Zahl mit und . Es sei . Dann ist

und daher ist wie gewünscht. Bei negativ kann man schreiben nach dem Resultat für positive Zahlen. Daraus ergibt sich

Im zweiten Fall erfüllen und die Bedingungen.
Zur Eindeutigkeit. Es sei , wobei die Bedingungen jeweils erfüllt seien. Es sei ohne Einschränkung . Dann gilt . Diese Differenz ist nichtnegativ und kleiner als , links steht aber ein Vielfaches von , sodass die Differenz sein muss und die beiden Darstellungen überein stimmen.