Zum Inhalt springen

Dreiecke/Nicht entartet/Offen/Umfang 1/Mannigfaltigkeit/Aufgabe

Aus Wikiversity

Wir betrachten den als Menge aller (auch entarteter) Dreiecke, indem wir ein Dreieck mit den (geordneten) Eckpunkten , und , mit dem Koordinatentupel

identifizieren.

  1. Zeige, dass die Menge der Dreiecke, bei denen zwei Eckpunkte zusammenfallen, eine abgeschlossene Teilmenge des ist (das Komplement davon ist somit eine offene Menge in , die wir nennen).
  2. Zeige, dass die Menge der Dreiecke, bei denen alle drei Eckpunkte auf einer Geraden liegen, eine abgeschlossene Teilmenge des ist (das Komplement davon, das aus allen nichtentarteten Dreiecken besteht, ist somit eine offene Menge in , die wir nennen).
  3. Erstelle eine Funktionsvorschrift, die die Abbildung

    beschreibt, die einem Dreieck seinen Umfang zuordnet.

  4. Zeige, dass die Funktion aus Teil (3) auf der Menge stetig differenzierbar ist.
  5. Berechne die partielle Ableitung von nach auf .
  6. Zeige, dass die Menge der nichtentarteten Dreiecke mit Umfang eine abgeschlossene Untermannigfaltigkeit von bildet. Was ist die Dimension?