Ebene projektive Kurve/Verschiedene affine Ausschnitte/Glattheit/Bemerkung
Es sei mit der Homogenisierung . Man gewinnt aus zurück, indem man durch ersetzt. beschreibt dann den Durchschnitt . Die beiden anderen affinen Ausschnitte, also
sind gleichberechtigt und liefern insbesondere affine Umgebungen für die Punkte von , die nicht in liegen.
Um beispielsweise die Glattheit in einem Punkt nachzuweisen wählt man sich eine offene affine Umgebung (am besten eine der , ) und überprüft dort mit dem Ableitungskriterium und der affinen Gleichung die Glattheit in diesem Punkt. Dabei hängt das Ergebnis für den Punkt nicht davon ab, mit welcher affinen Umgebung man arbeitet (es kann aber manchmal die eine Umgebung rechnerisch geschickter sein als eine andere).
Von der affinen Kurve aus gesehen sind die Punkte im Unendlichen die Punkte aus . Das ist der Schnitt der projektiven Kurve mit einer projektiven Geraden. Dies ist eine endliche Menge, es sei denn die projektive Gerade ist eine Komponente der Kurve, was aber nicht sein kann, wenn man mit einer affinen Kurve startet (da kein Teiler der Homogenisierung ist). Zur Berechnung der unendlich fernen Punkte betrachtet man die homogene Zerlegung
und die Homogenisierung
Zur Berechnung des Durchschnittes mit muss man setzen, sodass man die Nullstellen des homogenen Polynoms (in zwei Variablen) berechnen muss. Der Grad gibt also sofort eine Schranke, wie viele unendlich ferne Punkte es maximal auf der Kurve geben kann.