Eigenvektoren/Charakteristisches Polynom/3/Aufgabe/Lösung

Aus Wikiversity
Zur Navigation springen Zur Suche springen

a) Das charakteristische Polynom ist

und die Eigenwerte von sind .

b) Wir bestimmen für jeden Eigenwert einen Eigenvektor.

:

Wir müssen ein nichttriviales Element im Kern von

bestimmen. Da gehört dazu.

:

Dies führt auf

Wir wählen und und erhalten , also ist

ein Eigenvektor zum Eigenwert .

:

Dies führt auf

Mit und ist die mittlere Zeile erfüllt. Die erste Zeile wird dann zu


Somit ist

ein Eigenvektor zum Eigenwert .

c) Bezüglich einer Basis aus Eigenvektoren besitzt die beschreibende Matrix die Gestalt