Zum Inhalt springen

Einheitsintervall/Bijektiv/Nicht rektifizierbar/Beispiel/Aufgabe/Lösung

Aus Wikiversity


Wir betrachten die Funktion

die offenbar bijektiv ist. Um zu zeigen, dass nicht rektifizierbar ist, wählen wir zu irrationale Zahlen , , mit

All diese Zahlen nehmen wir als Intervallunterteilung. Für ist die Summe der Länge der Abstände der Bildpunkte mindestens

da ja in diesem Bereich

gilt. Da beliebig groß gewählt werden kann, ist das Supremum über alle Streckenzuglängen unendlich und die Kurve ist nicht rektifizierbar.