Zum Inhalt springen

Elementare Mathematik 1/Gemischte Definitionsabfrage/21/Aufgabe/Lösung

Aus Wikiversity


  1. Eine Menge heißt endlich mit Elementen, wenn es eine Bijektion

    gibt.

  2. Man nennt

    den Graphen der Abbildung .

  3. Die Zahl heißt das kleinste gemeinsame Vielfache der , wenn ein gemeinsames Vielfaches ist und unter allen gemeinsamen Vielfachen der das Kleinste ist.
  4. Unter dem Nachfolger einer ganzen Zahl versteht man die Zahl

    wobei den Nachfolger auf und den Vorgänger auf bezeichnet.

  5. Eine Menge heißt ein Körper, wenn es zwei Verknüpfungen (genannt Addition und Multiplikation)

    und zwei verschiedene Elemente gibt, die die folgenden Eigenschaften erfüllen.

    1. Axiome der Addition
      1. Assoziativgesetz: Für alle gilt: .
      2. Kommutativgesetz: Für alle gilt .
      3. ist das neutrale Element der Addition, d.h. für alle ist .
      4. Existenz des Negativen: Zu jedem gibt es ein Element mit .
    2. Axiome der Multiplikation
      1. Assoziativgesetz: Für alle gilt: .
      2. Kommutativgesetz: Für alle gilt .
      3. ist das neutrale Element der Multiplikation, d.h. für alle ist .
      4. Existenz des Inversen: Zu jedem mit gibt es ein Element mit .
    3. Distributivgesetz: Für alle gilt .
  6. Zu einer rationalen Zahl ist die Gaußklammer durch

    definiert.