Zum Inhalt springen

Elementare Mathematik 1/Gemischte Definitionsabfrage/27/Aufgabe/Lösung

Aus Wikiversity


  1. Eine Abbildung von nach ist dadurch gegeben, dass jedem Element der Menge genau ein Element der Menge zugeordnet wird.
  2. Man sagt, dass eine natürliche Zahl größergleich einer natürlichen Zahl ist, geschrieben

    wenn man von aus durch endlichfaches Nachfolgernehmen zu gelangt.

  3. Der Binomialkoeffizient ist durch

    definiert.

  4. Die Menge der ganzen Zahlen besteht aus der Menge aller positiven natürlichen Zahlen , der und der Menge , die die negativen ganzen Zahlen heißen.
  5. Eine Menge heißt ein Körper, wenn es zwei Verknüpfungen (genannt Addition und Multiplikation)

    und zwei verschiedene Elemente gibt, die die folgenden Eigenschaften erfüllen.

    1. Axiome der Addition
      1. Assoziativgesetz: Für alle gilt: .
      2. Kommutativgesetz: Für alle gilt .
      3. ist das neutrale Element der Addition, d.h. für alle ist .
      4. Existenz des Negativen: Zu jedem gibt es ein Element mit .
    2. Axiome der Multiplikation
      1. Assoziativgesetz: Für alle gilt: .
      2. Kommutativgesetz: Für alle gilt .
      3. ist das neutrale Element der Multiplikation, d.h. für alle ist .
      4. Existenz des Inversen: Zu jedem mit gibt es ein Element mit .
    3. Distributivgesetz: Für alle gilt .
  6. Ein Dezimalbruch ist eine rationale Zahl, die man mit einer Zehnerpotenz als Nenner schreiben kann.