Zum Inhalt springen

Elementare Mathematik 2/Gemischte Satzabfrage/11/Aufgabe/Lösung

Aus Wikiversity


  1. Es sei ein Körper und sei eine lineare Abbildung mit zugehöriger Matrix . Dann ist genau dann bijektiv, wenn invertierbar ist.
  2. Das Äquivalenzklassenmodell von ist mit der Addition

    der Multiplikation

    dem Nullelement , dem Einselement und der durch

    falls

    definierten Ordnung ein angeordneter Ring.
  3. Es sei ein endlicher Wahrscheinlichkeitsraum und

    eine Zerlegung in disjunkte Teilmengen, die alle positive Wahrscheinlichkeiten haben mögen. Dann ist für jedes Ereignis mit positiver Wahrscheinlichkeit