Zum Inhalt springen

Elliptische Kurve/Weierstraßform/Bemerkung

Aus Wikiversity

In Charakteristik lässt sich eine elliptische Kurve durch eine Weierstraßgleichung der Form

in inhomogener bzw.

in homogener Form beschreiben. Dabei ist

die Bedingung für die Glattheit. Bei sind Parameter und sind stets Parameter im Kegel, dagegen nicht. Das Bündel besitzt durch einen nichttrivalen Schnitt, der allerdings eine Nullstelle im Punkt hat.

Wir ersetzen durch , wir arbeiten also mit der neuen Variablen , die anderen Variablen bleiben gleich. Dann erhält man die neue Kurvengleichung

Wir wählen . Dann ist jedenfalls das Tupel nullstellenfrei und wir haben einen nullstellenfreien Schnitt von , d.h. dies ist eine Realisierung von als Syzygienbündel. Dabei sind Parameter und bei

auch Parameter. Letzteres kann man unter der Charakteristikbedingung stets erreichen.