# Endlicher Wahrscheinlichkeitsraum/Stammbruchsumme/945/Ereignisse/Aufgabe

Zur Navigation springen Zur Suche springen

Wir betrachten den endlichen Wahrscheinlichkeitsraum

${\displaystyle \{a,b,c,d,e,f,g,h,i,j,k\}}$

mit der Wahrscheinlichkeitsdichte

${\displaystyle \psi (a)={\frac {1}{945}},\,\psi (b)={\frac {1}{105}}={\frac {9}{945}},\,\psi (c)={\frac {1}{45}}={\frac {21}{945}},\,\psi (d)={\frac {1}{35}}={\frac {27}{945}},}$
${\displaystyle \psi (e)={\frac {1}{27}}={\frac {35}{945}},\,\psi (f)={\frac {1}{21}}={\frac {45}{945}},\,\psi (g)={\frac {1}{15}}={\frac {63}{945}},\,\psi (h)={\frac {1}{9}}={\frac {105}{945}},}$
${\displaystyle \psi (i)={\frac {1}{7}}={\frac {135}{945}},\,\psi (j)={\frac {1}{5}}={\frac {189}{945}},\,\psi (k)={\frac {1}{3}}={\frac {315}{945}}.}$

Bestimme die Wahrscheinlichkeiten der folgenden Ereignisse:

1. ${\displaystyle {}\{a,f,j\}}$,
2. ${\displaystyle {}\{b,c,h,i,k\}}$,
3. ${\displaystyle {}\{a,c,d,g,i,k\}}$,
4. ${\displaystyle {}\{a,b,d,e,f,g\}}$,
5. ${\displaystyle {}\{c,d,e,g,h,i,k\}}$,
6. ${\displaystyle {}\{a,b,c,d,f,g,h,j,k\}}$.