Ganze Zahlen/Negative Zahlen/Direkt/Multiplikationsvorstellung/Bemerkung

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Wie schon bei den natürlichen Zahlen ist die Vorstellung für die Multiplikation von ganzen Zahlenschwieriger als für die Addition, da bei der Addition beide Summanden die gleiche Rolle spielen (zumindest in der wichtigsten Interpretationen), während dies bei der Multiplikation nicht der Fall ist. Man kann nicht drei Äpfel mal fünf Äpfel ausrechnen. Wie bei den natürlichen Zahlen beschreibt der eine Faktor die Vielfachheit, mit der ein Prozess durchgeführt, den der andere Faktor quantitativ misst. Man kann also dreimal jeweils fünf Äpfel von nach transportieren und transportiert dann insgesamt Äpfel von nach . Das gleiche erreicht man, wenn man fünfmal drei Äpfel von nach transportiert. Ebenso kann man -mal Äpfel in die andere Richtung von nach transportieren, und transportiert damit insgesamt Äpfel von nach . Ganze Zahlen (der Apfeltransport samt Richtung) mit einer natürlichen Zahl zu multiplizieren besitzt also eine passende natürliche Interpretation. Schwieriger ist es, wenn beide Zahlen negativ sind. Die Definition sagt, dass dann das Produkt der zugehörigen positiven Zahlen herauskommt. Dies kann man sich so vorstellen: Es sei ein reversibler Prozess, der gegenläufige Prozess sei mit bezeichnet. Für ist die -fache Ausführung von . Für negatives

interpretiert man dann als die -fache Ausführung des gegenläufigen Prozesses. Insbesondere ist

Multiplikation mit führt also auf den gegenläufigen Prozess, und von daher ist es einleuchtend, auch

zu setzen, da der gegenläufige Prozess zum gegenläufigen Prozess der Prozess selbst ist.

Auch von den gewünschten algebraischen Gesetzmäßigkeiten her ist die Festlegung sinnvoll. Es soll

gelten und es soll das Distributivgesetz gelten. Dann ist für und

Bei negativem ergibt sich daraus

Das Produkt muss also bei Addition mit Null ergeben, dies ist aber gerade die charakteristische Eigenschaft von . Also ist