Geraden/Ebene/Maximale Anzahl von Schnittpunkten/Aufgabe/Lösung

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Die maximale Anzahl der Schnittpunkte ist . Dies beweisen wir durch Induktion über . Bei keiner oder einer Geraden gibt es keinen Schnittpunkt, die Formel ist also richtig, und dies sichert den Induktionsanfang. Sei die Aussage nun für Geraden bewiesen, und es komme eine neue Gerade hinzu. Diese neue Gerade hat mit jeder der vorgegebenen Geraden höchstens einen Schnittpunkt. Wenn die neue Gerade einen Richtungsvektor besitzt, der von allen Richtungsvektoren der Geraden verschieden ist, so besitzt die neue Gerade mit jeder alten Geraden einen Schnittpunkt. Da es unendlich viele Richtungsvektoren gibt, kann man stets eine neue Richtung für die neue Gerade wählen. Indem man die neue Gerade parallel verschiebt, kann man auch erreichen, dass die neuen Schnittpunkte von den alten Schnittpunkten verschieden sind. Es kann also erreicht werden, dass genau Schnittpunkte hinzukommen. Wenn die Geraden die maximale mögliche Anzahl von Schnittpunkten haben, so hat die neue Geradenkonfiguration genau

Schnittpunkte (und wenn die Geraden weniger als Schnittpunkte haben, so hat auch die neue Geradenkonfiguration weniger als Schnittpunkte),

was den Induktionsschritt beweist.
Zur gelösten Aufgabe