Gleichung/Umformungsprinzip/Nicht injektiv/Bemerkung

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Sei eine Gleichung der Form

gegeben. Wir betrachten Gleichungsumformungen, die nicht auf einer injektiven Abbildung beruhen. Als Extremfall betrachten wir die Multiplikation mit , die ja aufgrund der Annullationsregel alles auf abbildet und somit hochgradig nicht injektiv ist. Die umgeformte Gleichung ist

also einfach

Diese Gleichung wird natürlich von jedem erfüllt, zum Auffinden der Lösungen der Ursprungsgleichung liefert diese Umformung keinen sinnvollen Beitrag.

Betrachten wir das Quadrieren, d.h. wir gehen von der gegebenen Gleichung zu

über. Über den natürlichen Zahlen ist das Quadrieren eine injektive Abbildung, aber nicht auf den ganzen Zahlen. Die Gleichung

hat offenbar die einzige Lösung

dagegen hat die quadrierte Gleichung

die beiden Lösungen