Gruppenhomomorphismus/Z nach Z mod d/Direkt/Beispiel

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Sei . Wir betrachten die Menge

mit der in Aufgabe beschriebenen Addition, die damit eine Gruppe ist. Die Abbildung

die eine ganze Zahl auf ihren Rest bei Division durch abbildet, ist ein Gruppenhomomorphismus. Sind nämlich und mit gegeben, so ist

wobei allerdings sein kann. In diesem Fall ist

und das stimmt mit der Addition von und in überein. Diese Abbildungen sind surjektiv, aber nicht injektiv.