Integration/Substitution/Bemerkung
Erscheinungsbild
Die Substitution wird folgendermaßen angewendet: Es soll das Integral
berechnet werden. Man muss dann eine Idee haben, dass durch die Substitution
das Integral einfacher wird (und zwar unter Berücksichtigung der Ableitung und unter der Bedingung, dass die Umkehrfunktion berechenbar ist). Mit und liegt insgesamt die Situation
vor. In vielen Fällen kommt man mit gewissen Standardsubstitutionen weiter.
Bei einer Substitution werden drei Operationen durchgeführt.
- Ersetze durch .
- Ersetze durch .
- Ersetze die Integrationsgrenzen und durch und .
Für den zweiten Schritt empfiehlt sich die Merkregel
der man im Rahmen der Theorie der „Differentialformen“ auch eine inhaltliche Bedeutung geben kann.