Zum Inhalt springen

Kommutative Monoidringe/Polynomring als Monoidring (mehrere Variablen)/Beispiel

Aus Wikiversity

Es sei eine natürliche Zahl und das -fache direkte Produkt der natürlichen Zahlen. Ein Element ist also ein -Tupel mit . Dies kann man auch als

schreiben. Damit lässt sich das zugehörige Monom eindeutig als

schreiben, wobei wir für das Monom zum -ten Basiselement geschrieben haben. Das bedeutet aber, dass der Monoidring zum Monoid über genau der Polynomring in Variablen ist. Insbesondere ist . Der Monoidring zum trivialen Monoid ist der Grundring selbst.