Komplexe Funktion/Exponentialgleichung/Ableitung/Aufgabe/Lösung
Erscheinungsbild
Bei ist , sodass die Nullfunktion vorliegt, die die angegebene Ableitungseigenschaft (mit einem beliebigen ) erfüllt. Es sei also . Dann ist wegen . Der Differenzenquotient ist
Der rechte Faktor ist der Differenzenquotient im Nullpunkt. Dieser konvergiert nach Voraussetzung für gegen . Also konvergiert der Differenzenquotient gegen und die Ableitungseigenschaft ist mit
erfüllt.