Zum Inhalt springen

Komplexe Zahlen/Körper/Fakt/Beweis

Aus Wikiversity
Beweis

Die Körpereigenschaften für die komponentenweise definierte Addition sind klar, da die entsprechenden Eigenschaften für gelten. Es ist

somit ist die das neutrale Element der Multiplikation. Die Kommutativität der Multiplikation ist ebenfalls von der Formel her klar. Zum Nachweis der Assoziativität der Multiplikation berechnen wir

Ebenso ist

Wenn

ist, so ist mindestens eine der Zahlen oder von verschieden und damit ist . Somit ist eine komplexe Zahl und es gilt

also besitzt jedes Element ein Inverses bezüglich der Multiplikation. Das Distributivgesetz folgt aus