Kurs:Analysis/Teil I/16/Klausur/latex

Aus Wikiversity

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}

%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 6 }

\renewcommand{\avier}{ 4 }

\renewcommand{\afuenf}{ 4 }

\renewcommand{\asechs}{ 3 }

\renewcommand{\asieben}{ 5 }

\renewcommand{\aacht}{ 6 }

\renewcommand{\aneun}{ 6 }

\renewcommand{\azehn}{ 7 }

\renewcommand{\aelf}{ 4 }

\renewcommand{\azwoelf}{ 5 }

\renewcommand{\adreizehn}{ 8 }

\renewcommand{\avierzehn}{ 64 }

\renewcommand{\afuenfzehn}{ }

\renewcommand{\asechzehn}{ }

\renewcommand{\asiebzehn}{ }

\renewcommand{\aachtzehn}{ }

\renewcommand{\aneunzehn}{ }

\renewcommand{\azwanzig}{ }

\renewcommand{\aeinundzwanzig}{ }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabelledreizehn

\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Der \stichwort {Betrag} {} eines Elementes $x$ in einem angeordneten Körper $K$.

}{Der \stichwort {Grad} {} eines Polynoms
\mathbed {P \in K[X]} {}
{P \neq 0} {}
{} {} {} {,} über einem Körper $K$.

}{Ein \stichwort {lokales Minimum} {} einer Funktion \maabbdisp {f} {D} {\R } {} \zusatzklammer {\mathlk{D \subseteq \R}{} eine Teilmenge} {} {} in einem Punkt
\mathl{x \in D}{.}

}{Die Zahl $\pi$ \zusatzklammer {gefragt ist nach der analytischen Definition} {} {.}

}{Die \stichwort {Potenzreihe} {} in $z \in {\mathbb C}$ zu den Koeffizienten
\mathbed {c_n \in {\mathbb C}} {}
{n \in \N} {}
{} {} {} {.}

}{Die \stichwort {Zeitunabhängigkeit} {} einer \definitionsverweis {gewöhnlichen Differentialgleichung}{}{}
\mathdisp {y'= f(t,y)} { . }
}

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Der \stichwort {Satz über beschränkte Teilmengen} {} von $\R$.}{Die \stichwort {Funktionalgleichung} {} der komplexen Exponentialfunktion.}{Der Satz über \stichwort {partielle Integration} {.}}

}
{} {}




\inputaufgabegibtloesung
{6 (1+1+1+1+2)}
{

Bei einer Fernsehaufzeichnung sitzen $n$ Zuschauer im Studio, die über ein elektronisches Gerät auf verschiedene Fragen mit Ja oder Nein antworten und wobei das Ergebnis \zusatzklammer {die Ja-Antworten} {} {} in vollen Prozent auf einem Bildschirm erscheint und wobei ab
\mathl{,5}{} nach oben gerundet wird.

a) Erstelle eine Formel mit Hilfe der \definitionsverweis {Gaußklammer}{}{} $\lfloor \, \, \rfloor$, die bei gegebenem $n$ aus $i$ die Prozentzahl
\mathl{p(i)}{} berechnet.

b) Für welche $n$ ist die Prozentabbildung aus a) injektiv und für welche surjektiv?

c) Es sei
\mathl{n=99}{.} Welche Prozentzahl tritt nie auf dem Bildschirm auf?

d) Es sei
\mathl{n=101}{.} Hinter welcher Prozentzahl können sich unterschiedlich viele Ja-Stimmen verbergen?

e) Es sei
\mathl{n=102}{.} Hinter welchen Prozentzahlen können sich unterschiedlich viele Ja-Stimmen verbergen?

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es sei $K$ ein \definitionsverweis {angeordneter Körper}{}{} und es seien \mathkor {} {{ \left( x_n \right) }_{n \in \N }} {und} {{ \left( y_n \right) }_{n \in \N }} {} \definitionsverweis {konvergente Folgen}{}{} in $K$. Zeige, dass die Produktfolge
\mathl{{ \left( x_n \cdot y_n \right) }_{ n \in \N }}{} ebenfalls konvergent mit
\mavergleichskettedisp
{\vergleichskette
{ \lim_{n \rightarrow \infty} { \left( x_n \cdot y_n \right) } }
{ =} { { \left( \lim_{n \rightarrow \infty} x_n \right) } \cdot { \left( \lim_{n \rightarrow \infty} y_n \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Es sei
\mathl{P \in K[X]}{} ein Polynom und
\mathl{a \in K}{.} Zeige, dass $a$ genau dann eine Nullstelle von $P$ ist, wenn $P$ ein Vielfaches des linearen Polynoms
\mathl{X-a}{} ist.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Es seien \maabbdisp {f,g} {[a,b]} {\R } {} \definitionsverweis {stetige Funktionen}{}{} mit
\mavergleichskette
{\vergleichskette
{f(a) }
{ \geq }{g(a) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{f(b) }
{ \leq }{g(b) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zeige, dass es einen Punkt
\mavergleichskette
{\vergleichskette
{ c }
{ \in }{ [a,b] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{f(c) }
{ = }{g(c) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gibt.

}
{} {}




\inputaufgabegibtloesung
{5}
{

Beweise die Funktionalgleichung für die komplexe Exponentialfunktion.

}
{} {}




\inputaufgabegibtloesung
{6 (3+3)}
{

Untersuche die Funktionenfolge \maabbeledisp {} {\R_{> 0}} { \R } {x} {f_n(x) } {,} mit
\mavergleichskettedisp
{\vergleichskette
{f_n(x) }
{ =} { x^{ { \frac{ n }{ n+1 } } } }
{ } { }
{ } { }
{ } { }
} {}{}{} auf

a) punktweise Konvergenz und auf

b) gleichmäßige Konvergenz.

}
{} {}




\inputaufgabegibtloesung
{6 (4+2)}
{

a) Man gebe ein quadratisches Polynom an, dessen Graph die Diagonale und die Gegendiagonale bei
\mavergleichskette
{\vergleichskette
{y }
{ = }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} jeweils tangential schneidet.

b) Man zeige, dass der Graph des Lösungspolynoms aus Teil a) innerhalb des oberen, durch die Diagonale und die Gegendiagonale begrenzten Viertels der Ebene liegt.

}
{} {}




\inputaufgabegibtloesung
{7 (1+1+3+2)}
{

Wir betrachten die Funktion
\mavergleichskettedisp
{\vergleichskette
{f(x) }
{ =} { { \frac{ 1 }{ \sin x } } }
{ } { }
{ } { }
{ } { }
} {}{}{} im Reellen.

a) Bestimme den Definitionsbereich von $f$.

b) Skizziere $f$ für $x$ zwischen \mathkor {} {-2 \pi} {und} {2 \pi} {.}

c) Bestimme die ersten drei Ableitungen von $f$.

d) Bestimme das Taylor-Polynom der Ordnung $3$ von $f$ im Punkt ${ \frac{ \pi }{ 2 } }$.

}
{} {}




\inputaufgabegibtloesung
{4 (2+2)}
{

Es sei \maabbdisp {f} {\R} {\R } {} eine \definitionsverweis {periodische Funktion}{}{} mit der Periode $L>0$.

a) Es sei $f$ \definitionsverweis {differenzierbar}{}{.} Zeige, dass die Ableitung $f'$ ebenfalls periodisch mit der Periode $L$ ist.

b) Man gebe ein Beispiel einer nichtkonstanten, periodischen, \definitionsverweis {stetigen Funktion}{}{} \maabb {f} {\R} {\R } {,} deren \definitionsverweis {Stammfunktion}{}{} nicht periodisch ist.

}
{} {}




\inputaufgabegibtloesung
{5}
{

Bestimme eine Stammfunktion für die Funktion \maabbeledisp {f} {\R_{>0}} { \R } {x} {{ \frac{ e^{3x} }{ e^x-e^{-x} } } } {.}

}
{} {}




\inputaufgabegibtloesung
{8 (2+2+4)}
{

Es sei
\mavergleichskettedisp
{\vergleichskette
{y' }
{ =} {h(y) }
{ } { }
{ } { }
{ } { }
} {}{}{} eine zeitunabhängige Differentialgleichung mit einer unendlich oft differenzierbaren Funktion \maabbdisp {h} {\R} {\R } {} und es sei \maabbdisp {y} {I} {\R } {} eine Lösung dazu auf einem offenen Intervall $I$.


a) Drücke die zweite Ableitung von $y$ mit
\mathl{h,h'}{} und $y$ aus.

b) Drücke die dritte Ableitung von $y$ mit
\mathl{h,h',h^{\prime \prime}}{} und $y$ aus.

c) Zeige, dass die $n$-te Ableitung von $y$ die Form
\mathdisp {{ \left( \sum_{ \nu } a_{ \nu } { \left( \prod_{j = 0}^{n-1} { \left( h^{(j)} \right) }^{ \nu_j} \right) } \right) } \circ y} { }
mit gewissen Zahlen
\mathl{a_{\nu} \in \N}{} für jedes $n$-Tupel
\mavergleichskette
{\vergleichskette
{\nu }
{ = }{(\nu_0 , \ldots , \nu_{n-1}) }
{ \in }{ \N^n }
{ }{ }
{ }{ }
} {}{}{} mit
\mathl{\nu_j \leq n-1}{} besitzt.

}
{} {}