Kurs:Elementare Algebra/3/Klausur/latex
%Daten zur Institution
%\input{Dozentdaten}
%\renewcommand{\fachbereich}{Fachbereich}
%\renewcommand{\dozent}{Prof. Dr. . }
%Klausurdaten
\renewcommand{\klausurgebiet}{ }
\renewcommand{\klausurtyp}{ }
\renewcommand{\klausurdatum}{ . 20}
\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}
%Daten für folgende Punktetabelle
\renewcommand{\aeins}{ 3 }
\renewcommand{\azwei}{ 3 }
\renewcommand{\adrei}{ 2 }
\renewcommand{\avier}{ 5 }
\renewcommand{\afuenf}{ 4 }
\renewcommand{\asechs}{ 3 }
\renewcommand{\asieben}{ 2 }
\renewcommand{\aacht}{ 3 }
\renewcommand{\aneun}{ 2 }
\renewcommand{\azehn}{ 2 }
\renewcommand{\aelf}{ 3 }
\renewcommand{\azwoelf}{ 3 }
\renewcommand{\adreizehn}{ 3 }
\renewcommand{\avierzehn}{ 6 }
\renewcommand{\afuenfzehn}{ 5 }
\renewcommand{\asechzehn}{ 8 }
\renewcommand{\asiebzehn}{ 5 }
\renewcommand{\aachtzehn}{ 2 }
\renewcommand{\aneunzehn}{ 64 }
\renewcommand{\azwanzig}{ }
\renewcommand{\aeinundzwanzig}{ }
\renewcommand{\azweiundzwanzig}{ }
\renewcommand{\adreiundzwanzig}{ }
\renewcommand{\avierundzwanzig}{ }
\renewcommand{\afuenfundzwanzig}{ }
\renewcommand{\asechsundzwanzig}{ }
\punktetabelleachtzehn
\klausurnote
\newpage
\setcounter{section}{0}
\inputaufgabegibtloesung
{3}
{
Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Die \stichwort {Ordnung} {} einer endlichen Gruppe $G$.
}{Der \stichwort {Binomialkoeffizient} {}
\mathl{\binom { n } { k }}{.}
}{Eine \stichwort {Körpererweiterung} {.}
}{Ein \stichwort {Hauptideal} {} in einem kommutativen Ring $R$.
}{Ein über einem Körper $K$
\stichwort {algebraisches} {}
Element
\mavergleichskette
{\vergleichskette
{ f
}
{ \in }{ A
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
einer
$K$-\definitionsverweis {Algebra}{}{}
$A$.
}{Eine \stichwort {Fermatsche Primzahl} {.} }
}
{} {}
\inputaufgabegibtloesung
{3}
{
Formuliere die folgenden Sätze. \aufzaehlungdrei{Der \stichwort {Satz über die Lösbarkeit von Gleichungen} {} in einer Gruppe $G$.}{Das \stichwort {Lemma von Euklid} {} für einen Hauptidealbereich.}{Der \stichwort {Satz über endliche Körpererweiterungen von $\R$ } {.}}
}
{} {}
\inputaufgabegibtloesung
{2}
{
Es sei $R$ ein \definitionsverweis {Integritätsbereich}{}{} und $R[X]$ der \definitionsverweis {Polynomring}{}{} über $R$. Zeige, dass die \definitionsverweis {Einheiten}{}{} von $R[X]$ genau die Einheiten von $R$ sind.
}
{} {}
\inputaufgabegibtloesung
{5}
{
Zeige, dass die \definitionsverweis {komplexen Zahlen}{}{} einen \definitionsverweis {Körper}{}{} bilden.
}
{} {}
\inputaufgabegibtloesung
{4}
{
Finde im
\definitionsverweis {Polynomring}{}{}
\mathl{\Z/(2)[X]}{} ein
\definitionsverweis {irreduzibles Polynom}{}{}
vom
\definitionsverweis {Grad}{}{}
vier.
}
{} {}
\inputaufgabegibtloesung
{3}
{
Zeige, dass im
\definitionsverweis {Polynomring}{}{}
\mathl{K[X,Y]}{} über einem Körper $K$ das
\definitionsverweis {Ideal}{}{}
\mathl{(X,Y)}{} kein
\definitionsverweis {Hauptideal}{}{}
ist.
}
{} {}
\inputaufgabegibtloesung
{2}
{
Es seien \mathkor {} {G} {und} {H} {} \definitionsverweis {Gruppen}{}{} und sei \maabbdisp {\varphi} {G} {H } {} ein \definitionsverweis {Gruppenisomorphismus}{}{.} Zeige, dass auch die \definitionsverweis {Umkehrabbildung}{}{} \maabbeledisp {\varphi^{-1}} {H} { G } {h} {\varphi^{-1}(h) } {,} ein Gruppenisomorphismus ist.
}
{} {}
\inputaufgabegibtloesung
{3}
{
Bestimme das kleinste gemeinsame Vielfache und den größten gemeinsamen Teiler der drei Zahlen
\mathdisp {3^4 \cdot 5^2,\, 2^4 \cdot 3^3 \cdot 5^1 \cdot 7^1,\, 2^5 \cdot 3^2 \cdot 5^2} { . }
Die Ergebnisse sollen ausgerechnet vorliegen.
}
{} {}
\inputaufgabegibtloesung
{2}
{
Stifte einen
\definitionsverweis {surjektiven}{}{}
\definitionsverweis {Gruppenhomomorphismus}{}{}
von der
\definitionsverweis {Gruppe}{}{}
der komplexen Zahlen ohne null
\mathl{({\mathbb C} \setminus \{0\}, \cdot,1)}{} in die multiplikative Gruppe der positiven reellen Zahlen
\mathl{(\R_+,\cdot,1 )}{.}
}
{} {}
\inputaufgabegibtloesung
{2}
{
Zeige, dass es in der
\definitionsverweis {Restklassengruppe}{}{}
\mathl{\Q/\Z}{} zu jedem
\mavergleichskette
{\vergleichskette
{ n
}
{ \in }{ \N_+
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
Elemente gibt, deren
\definitionsverweis {Ordnung}{}{}
gleich $n$ ist.
}
{} {}
\inputaufgabegibtloesung
{3}
{
Beweise den Homomorphiesatz für Ringe unter Bezug auf den Homomorphiesatz für Gruppen.
}
{} {}
\inputaufgabegibtloesung
{3}
{
Bestimme in $\Q[X]/(X^3+4X^2-7)$ das \definitionsverweis {Inverse}{}{} von ${ \frac{ 1 }{ 3 } } x+5$ \zusatzklammer {$x$ bezeichnet die Restklasse von $X$} {} {.}
}
{} {}
\inputaufgabegibtloesung
{3}
{
Beweise den kleinen Satz von Fermat.
}
{} {}
\inputaufgabegibtloesung
{6 (1+1+2+2)}
{
In dieser Aufgabe geht es um den Restklassenring $\Z/(360)$.
a) Schreibe $\Z/(360)$ als Produktring
\zusatzklammer {im Sinne des chinesischen Restsatzes} {} {.}
b) Wie viele Einheiten besitzt $\Z/(360)$?
c) Schreibe das Element $239$ in komponentenweiser Darstellung. Begründe, warum es sich um eine Einheit handelt und finde das Inverse in komponentenweiser Darstellung.
d) Berechne die Ordnung von $239$ in $\Z/(360)$.
}
{} {}
\inputaufgabegibtloesung
{5}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{}
und $V$ ein
$K$-\definitionsverweis {Vektorraum}{}{.} Es seien
\mavergleichskette
{\vergleichskette
{ s_1 , \ldots , s_k
}
{ \in }{ K
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ v_1 , \ldots , v_n
}
{ \in }{ V
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Zeige
\mavergleichskettedisp
{\vergleichskette
{ { \left( \sum_{i = 1}^k s_i \right) } \cdot { \left( \sum_{j = 1}^n v_j \right) }
}
{ =} { \sum_{ 1 \leq i \leq k,\, 1 \leq j \leq n } s_i \cdot v_j
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
{} {}
\inputaufgabegibtloesung
{8}
{
Es sei
\mathl{x=\sqrt{2} + \sqrt{5} \in \R}{} und betrachte die Körpererweiterung
\mathdisp {\Q \subseteq \Q (x)= L} { . }
Zeige, dass diese Körpererweiterung algebraisch ist und bestimme den Grad der Körpererweiterung, das Minimalpolynom
von $x$ und das Inverse von $x$.
(Man darf dabei verwenden, dass
\mathl{\sqrt{2}, \sqrt{5}, \sqrt{10}}{} irrationale Zahlen sind.)
}
{} {}
\inputaufgabegibtloesung
{5}
{
Berechne die Schnittpunkte der beiden Kreise
\mathkor {} {K_1} {und} {K_2} {,}
wobei $K_1$ den Mittelpunkt
\mathl{(3,4)}{} und den Radius $6$ und $K_2$ den Mittelpunkt $(-8,1)$ und den Radius $7$ besitzt.
}
{} {}
\inputaufgabegibtloesung
{2}
{
Es seien
\mavergleichskette
{\vergleichskette
{ z,w
}
{ \in }{ {\mathbb C}
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
konstruierbare Zahlen. Bestimme, ob die Zahl
\mathdisp {z^2 -3 z \sqrt{w} + \sqrt{z +w^2} - { \frac{ 5 }{ 7 } } +4 \sqrt{ \sqrt{z} + w } + \sqrt{11}} { }
konstruierbar ist.
}
{} {}