Kurs:Grundkurs Mathematik/Teil I/12/Klausur/latex

Aus Wikiversity
Zur Navigation springen Zur Suche springen

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}


%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 6 }

\renewcommand{\avier}{ 1 }

\renewcommand{\afuenf}{ 6 }

\renewcommand{\asechs}{ 2 }

\renewcommand{\asieben}{ 2 }

\renewcommand{\aacht}{ 3 }

\renewcommand{\aneun}{ 4 }

\renewcommand{\azehn}{ 2 }

\renewcommand{\aelf}{ 2 }

\renewcommand{\azwoelf}{ 1 }

\renewcommand{\adreizehn}{ 3 }

\renewcommand{\avierzehn}{ 2 }

\renewcommand{\afuenfzehn}{ 3 }

\renewcommand{\asechzehn}{ 3 }

\renewcommand{\asiebzehn}{ 6 }

\renewcommand{\aachtzehn}{ 5 }

\renewcommand{\aneunzehn}{ 1 }

\renewcommand{\azwanzig}{ 5 }

\renewcommand{\aeinundzwanzig}{ 63 }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabellezwanzig


\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Die \stichwort {Hintereinanderschaltung} {} der Abbildungen \maabbdisp {F} {L} {M } {} und \maabbdisp {G} {M} {N } {.}

}{Ein \stichwort {größter gemeinsamer Teiler} {} der natürlichen Zahlen $a_1 , \ldots , a_k$.

}{Ein \stichwort {angeordneter} {} kommutativer Ring $R$.

}{Die Eigenschaft, dass eine ganze Zahl $a$ eine ganze Zahl $b$ \stichwort {teilt} {.}

}{Ein \stichwort {Stammbruch} {.}

}{Eine \stichwort {Folge} {} in einer Menge $M$. }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Das Induktionsprinzip für Aussagen.}{Das \stichwort {Exponentenkriterium} {} für die Teilbarkeit von natürlichen Zahlen.}{Der Satz über das Wachstumsverhalten der (ganzzahligen) Exponentialfunktionen.}

}
{} {}




\inputaufgabegibtloesung
{6 (2+2+1+1)}
{

Wir betrachten die beiden Sätze \anfuehrung{Für jeden Topf gibt es einen Deckel}{} und \anfuehrung{Es gibt einen Deckel für jeden Topf}{,} die man im alltäglichen Verständnis wohl als gleichbedeutend ansehen würde. Wenn man aber die beiden Aussagen streng prädikatenlogisch \zusatzklammer {quantorenlogisch} {} {} von vorne nach hinten abarbeitet, so ergeben sich zwei unterschiedliche Bedeutungen. \aufzaehlungvier{Formuliere die beiden Aussagen durch zusätzliche Wörter so um, dass die unterschiedlichen Bedeutungen deutlich hervortreten. }{Es sei $T$ die Menge der Töpfe und $D$ die Menge der Deckel. Es sei
\mathl{P}{} ein zweistelliges Prädikat derart, dass \zusatzklammer {für
\mathl{x \in T}{} und
\mathl{y \in D}{}} {} {}
\mathl{P(x,y)}{} besagt, dass $y$ auf $x$ passt. Formuliere die beiden Aussagen allein mit geeigneten mathematischen Symbolen. }{Kann man aus der Aussage, dass es für jeden Topf einen Deckel gibt, logisch erschließen, dass es für jeden Deckel einen Topf gibt? }{Wie kann man erklären, dass die beiden Aussagen im alltäglichen Verständnis als gleichbedeutend interpretiert werden? }

}
{} {}




\inputaufgabegibtloesung
{1}
{

Das Brötchen von vorvorgestern ist überüberübermorgen von ....?

}
{} {}




\inputaufgabegibtloesung
{6}
{

Beweise den Satz über die Wohldefiniertheit der Anzahl einer endlichen Menge.

}
{} {}




\inputaufgabegibtloesung
{2 (1+1)}
{

Wir betrachten auf der Menge
\mavergleichskettedisp
{\vergleichskette
{M }
{ =} { \{a,b,c,d \} }
{ } { }
{ } { }
{ } { }
} {}{}{} die durch die Tabelle %Daten für folgende Tabelle


\renewcommand{\leitzeilenull}{ $\star$ }

\renewcommand{\leitzeileeins}{ $a$ }

\renewcommand{\leitzeilezwei}{ $b$ }

\renewcommand{\leitzeiledrei}{ $c$ }

\renewcommand{\leitzeilevier}{ $d$ }

\renewcommand{\leitzeilefuenf}{ }

\renewcommand{\leitzeilesechs}{ }

\renewcommand{\leitzeilesieben}{ }

\renewcommand{\leitzeileacht}{ }

\renewcommand{\leitzeileneun}{ }

\renewcommand{\leitzeilezehn}{ }

\renewcommand{\leitzeileelf}{ }

\renewcommand{\leitzeilezwoelf}{ }


\renewcommand{\leitspaltenull}{ }

\renewcommand{\leitspalteeins}{ $a$ }

\renewcommand{\leitspaltezwei}{ $b$ }

\renewcommand{\leitspaltedrei}{ $c$ }

\renewcommand{\leitspaltevier}{ $d$ }

\renewcommand{\leitspaltefuenf}{ }

\renewcommand{\leitspaltesechs}{ }

\renewcommand{\leitspaltesieben}{ }

\renewcommand{\leitspalteacht}{ }

\renewcommand{\leitspalteneun}{ }

\renewcommand{\leitspaltezehn}{ }

\renewcommand{\leitspalteelf}{ }

\renewcommand{\leitspaltezwoelf}{ }

\renewcommand{\leitspaltedreizehn}{ }

\renewcommand{\leitspaltevierzehn}{ }

\renewcommand{\leitspaltefuenfzehn}{ }

\renewcommand{\leitspaltesechzehn}{ }

\renewcommand{\leitspaltesiebzehn}{ }

\renewcommand{\leitspalteachtzehn}{ }

\renewcommand{\leitspalteneunzehn}{ }

\renewcommand{\leitspaltezwanzig}{ }



\renewcommand{\aeinsxeins}{ b }

\renewcommand{\aeinsxzwei}{ a }

\renewcommand{\aeinsxdrei}{ c }

\renewcommand{\aeinsxvier}{ d }

\renewcommand{\aeinsxfuenf}{ }

\renewcommand{\aeinsxsechs}{ }

\renewcommand{\aeinsxsieben}{ }

\renewcommand{\aeinsxacht}{ }

\renewcommand{\aeinsxneun}{ }

\renewcommand{\aeinsxzehn}{ }

\renewcommand{\aeinsxelf}{ }

\renewcommand{\aeinsxzwoelf}{ }



\renewcommand{\azweixeins}{ d }

\renewcommand{\azweixzwei}{ a }

\renewcommand{\azweixdrei}{ a }

\renewcommand{\azweixvier}{ a }

\renewcommand{\azweixfuenf}{ }

\renewcommand{\azweixsechs}{ }

\renewcommand{\azweixsieben}{ }

\renewcommand{\azweixacht}{ }

\renewcommand{\azweixneun}{ }

\renewcommand{\azweixzehn}{ }

\renewcommand{\azweixelf}{ }

\renewcommand{\azweixzwoelf}{ }



\renewcommand{\adreixeins}{ d }

\renewcommand{\adreixzwei}{ b }

\renewcommand{\adreixdrei}{ b }

\renewcommand{\adreixvier}{ a }

\renewcommand{\adreixfuenf}{ }

\renewcommand{\adreixsechs}{ }

\renewcommand{\adreixsieben}{ }

\renewcommand{\adreixacht}{ }

\renewcommand{\adreixneun}{ }

\renewcommand{\adreixzehn}{ }

\renewcommand{\adreixelf}{ }

\renewcommand{\adreixzwoelf}{ }



\renewcommand{\avierxeins}{ b }

\renewcommand{\avierxzwei}{ d }

\renewcommand{\avierxdrei}{ d }

\renewcommand{\avierxvier}{ c }

\renewcommand{\avierxfuenf}{ }

\renewcommand{\avierxsechs}{ }

\renewcommand{\avierxsieben}{ }

\renewcommand{\avierxacht}{ }

\renewcommand{\avierxneun}{ }

\renewcommand{\avierxzehn}{ }

\renewcommand{\avierxelf}{ }

\renewcommand{\avierxzwoelf}{ }


\renewcommand{\afuenfxeins}{ }

\renewcommand{\afuenfxzwei}{ }

\renewcommand{\afuenfxdrei}{ }

\renewcommand{\afuenfxvier}{ }

\renewcommand{\afuenfxfuenf}{ }

\renewcommand{\afuenfxsechs}{ }

\renewcommand{\afuenfxsieben}{ }

\renewcommand{\afuenfxacht}{ }

\renewcommand{\afuenfxneun}{ }

\renewcommand{\afuenfxzehn}{ }

\renewcommand{\afuenfxelf}{ }

\renewcommand{\afuenfxzwoelf}{ }


\renewcommand{\asechsxeins}{ }

\renewcommand{\asechsxzwei}{ }

\renewcommand{\asechsxdrei}{ }

\renewcommand{\asechsxvier}{ }

\renewcommand{\asechsxfuenf}{ }

\renewcommand{\asechsxsechs}{ }

\renewcommand{\asechsxsieben}{ }

\renewcommand{\asechsxacht}{ }

\renewcommand{\asechsxneun}{ }

\renewcommand{\asechsxzehn}{ }

\renewcommand{\asechsxelf}{ }

\renewcommand{\asechsxzwoelf}{ }


\renewcommand{\asiebenxeins}{ }

\renewcommand{\asiebenxzwei}{ }

\renewcommand{\asiebenxdrei}{ }

\renewcommand{\asiebenxvier}{ }

\renewcommand{\asiebenxfuenf}{ }

\renewcommand{\asiebenxsechs}{ }

\renewcommand{\asiebenxsieben}{ }

\renewcommand{\asiebenxacht}{ }

\renewcommand{\asiebenxneun}{ }

\renewcommand{\asiebenxzehn}{ }

\renewcommand{\asiebenxelf}{ }

\renewcommand{\asiebenxzwoelf}{ }


\renewcommand{\aachtxeins}{ }

\renewcommand{\aachtxzwei}{ }

\renewcommand{\aachtxdrei}{ }

\renewcommand{\aachtxvier}{ }

\renewcommand{\aachtxfuenf}{ }

\renewcommand{\aachtxsechs}{ }

\renewcommand{\aachtxsieben}{ }

\renewcommand{\aachtxacht}{ }

\renewcommand{\aachtxneun}{ }

\renewcommand{\aachtxzehn}{ }

\renewcommand{\aachtxelf}{ }

\renewcommand{\aachtxzwoelf}{ }


\renewcommand{\aneunxeins}{ }

\renewcommand{\aneunxzwei}{ }

\renewcommand{\aneunxdrei}{ }

\renewcommand{\aneunxvier}{ }

\renewcommand{\aneunxfuenf}{ }

\renewcommand{\aneunxsechs}{ }

\renewcommand{\aneunxsieben}{ }

\renewcommand{\aneunxacht}{ }

\renewcommand{\aneunxneun}{ }

\renewcommand{\aneunxzehn}{ }

\renewcommand{\aneunxelf}{ }

\renewcommand{\aneunxzwoelf}{ }


\renewcommand{\azehnxeins}{ }

\renewcommand{\azehnxzwei}{ }

\renewcommand{\azehnxdrei}{ }

\renewcommand{\azehnxvier}{ }

\renewcommand{\azehnxfuenf}{ }

\renewcommand{\azehnxsechs}{ }

\renewcommand{\azehnxsieben}{ }

\renewcommand{\azehnxacht}{ }

\renewcommand{\azehnxneun}{ }

\renewcommand{\azehnxzehn}{ }

\renewcommand{\azehnxelf}{ }

\renewcommand{\azehnxzwoelf}{ }



\renewcommand{\aelfxeins}{ }

\renewcommand{\aelfxzwei}{ }

\renewcommand{\aelfxdrei}{ }

\renewcommand{\aelfxvier}{ }

\renewcommand{\aelfxfuenf}{ }

\renewcommand{\aelfxsechs}{ }

\renewcommand{\aelfxsieben}{ }

\renewcommand{\aelfxacht}{ }

\renewcommand{\aelfxneun}{ }

\renewcommand{\aelfxzehn}{ }

\renewcommand{\aelfxelf}{ }

\renewcommand{\aelfxzwoelf}{ }



\renewcommand{\azwoelfxeins}{ }

\renewcommand{\azwoelfxzwei}{ }

\renewcommand{\azwoelfxdrei}{ }

\renewcommand{\azwoelfxvier}{ }

\renewcommand{\azwoelfxfuenf}{ }

\renewcommand{\azwoelfxsechs}{ }

\renewcommand{\azwoelfxsieben}{ }

\renewcommand{\azwoelfxacht}{ }

\renewcommand{\azwoelfxneun}{ }

\renewcommand{\azwoelfxzehn}{ }

\renewcommand{\azwoelfxelf}{ }

\renewcommand{\azwoelfxzwoelf}{ }



\renewcommand{\adreizehnxeins}{ }

\renewcommand{\adreizehnxzwei}{ }

\renewcommand{\adreizehnxdrei}{ }

\renewcommand{\adreizehnxvier}{ }

\renewcommand{\adreizehnxfuenf}{ }

\renewcommand{\adreizehnxsechs}{ }

\renewcommand{\adreizehnxsieben}{ }

\renewcommand{\adreizehnxacht}{ }

\renewcommand{\adreizehnxneun}{ }

\renewcommand{\adreizehnxzehn}{ }

\renewcommand{\adreizehnxelf}{ }

\renewcommand{\adreizehnxzwoelf}{ }



\renewcommand{\avierzehnxeins}{ }

\renewcommand{\avierzehnxzwei}{ }

\renewcommand{\avierzehnxdrei}{ }

\renewcommand{\avierzehnxvier}{ }

\renewcommand{\avierzehnxfuenf}{ }

\renewcommand{\avierzehnxsechs}{ }

\renewcommand{\avierzehnxsieben}{ }

\renewcommand{\avierzehnxacht}{ }

\renewcommand{\avierzehnxneun}{ }

\renewcommand{\avierzehnxzehn}{ }

\renewcommand{\avierzehnxelf}{ }

\renewcommand{\avierzehnxzwoelf}{ }


\renewcommand{\afuenfzehnxeins}{ }

\renewcommand{\afuenfzehnxzwei}{ }

\renewcommand{\afuenfzehnxdrei}{ }

\renewcommand{\afuenfzehnxvier}{ }

\renewcommand{\afuenfzehnxfuenf}{ }

\renewcommand{\afuenfzehnxsechs}{ }

\renewcommand{\afuenfzehnxsieben}{ }

\renewcommand{\afuenfzehnxacht}{ }

\renewcommand{\afuenfzehnxneun}{ }

\renewcommand{\afuenfzehnxzehn}{ }

\renewcommand{\afuenfzehnxelf}{ }

\renewcommand{\afuenfzehnxzwoelf}{ }


\renewcommand{\asechzehnxeins}{ }

\renewcommand{\asechzehnxzwei}{ }

\renewcommand{\asechzehnxdrei}{ }

\renewcommand{\asechzehnxvier}{ }

\renewcommand{\asechzehnxfuenf}{ }

\renewcommand{\asechzehnxsechs}{ }

\renewcommand{\asechzehnxsieben}{ }

\renewcommand{\asechzehnxacht}{ }

\renewcommand{\asechzehnxneun}{ }

\renewcommand{\asechzehnxzehn}{ }

\renewcommand{\asechzehnxelf}{ }

\renewcommand{\asechzehnxzwoelf}{ }


\tabelleleitvierxvier

gegebene Verknüpfung $\star$. \aufzaehlungzwei {Berechne
\mathdisp {a \star ( b \star (c \star d))} { . }
} {Besitzt die Verknüpfung $\star$ ein neutrales Element? }

}
{} {}




\inputaufgabegibtloesung
{2}
{

Erstelle das kleine Einmaleins im Sechsersystem.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Es seien
\mathl{p_1 , \ldots , p_n}{} die ersten $n$ \definitionsverweis {Primzahlen}{}{.} Finde eine Schranke, unterhalb der es eine weitere Primzahl geben muss.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Beweise die Formel
\mavergleichskettedisp
{\vergleichskette
{ 2^n }
{ =} { \sum_{k = 0}^n \binom { n } { k} }
{ } { }
{ } { }
{ } { }
} {}{}{} durch Induktion nach $n$.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Vor einem Fußballspiel begrüßt jeder der elf Spieler einer Mannschaft jeden Spieler der anderen Mannschaft, jeder Spieler begrüßt die vier Unparteiischen und diese begrüßen sich alle untereinander. Wie viele Begrüßungen finden statt?

}
{} {}




\inputaufgabegibtloesung
{2}
{

Man gebe ein Beispiel für eine natürliche Zahl, die man als Summe von vier Quadraten darstellen kann, aber nicht als Summe von drei Quadraten.

}
{} {}




\inputaufgabegibtloesung
{1}
{

Berechne
\mathdisp {(-1)^{73420504063658}} { . }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Zeige, dass es zu ganzen Zahlen $d,n$ mit $d>0$ eindeutig bestimmte ganze Zahlen $q,r$ mit $0 \leq r< d$ und mit
\mavergleichskettedisp
{\vergleichskette
{n }
{ =} {dq+r }
{ } { }
{ } { }
{ } { }
} {}{}{} gibt. Dabei darf die Division mit Rest für natürliche Zahlen verwendet werden.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Lucy Sonnenschein befindet sich in Position
\mathl{(-2,3)\in \Z^2}{} \zusatzklammer {die Koordinaten seien mit \mathkor {} {x} {und} {y} {} bezeichnet} {} {} und schaut in die positive $x$-Richtung. Alle folgenden Angaben beziehen sich auf ihre jeweilige Position und ihre Ausrichtung, der Uhrzeigersinn bezieht sich auf die Draufsicht. Lucy führt hintereinander folgende Bewegungen aus. Sie macht einen Schritt nach rechts, dann zwei Schritte nach hinten, sie dreht sich um $180$ Grad, macht drei Schritte nach links, macht eine Vierteldrehung im Uhrzeigersinn, macht vier Schritte nach rechts und zwei Schritte nach hinten, dreht sich um $360$ Grad und macht einen Schritt nach links.

Wo befindet sie sich nach der Gesamtbewegung und in welche Richtung schaut sie?

}
{} {}




\inputaufgabegibtloesung
{3 (2+1)}
{

Es seien
\mathl{a,b}{} positive natürliche Zahlen. Die Summe der \definitionsverweis {Stammbrüche}{}{} ist dann
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ 1 }{ a } } + { \frac{ 1 }{ b } } }
{ =} { { \frac{ b+a }{ ab } } }
{ } { }
{ } { }
{ } { }
} {}{}{.} \aufzaehlungzwei {Zeige, dass bei $a,b$ \definitionsverweis {teilerfremd}{}{} diese Darstellung gekürzt ist. } {Zeige, dass im Allgemeinen diese Darstellung nicht gekürzt sein muss. }

}
{} {}




\inputaufgabe
{3}
{

Beschreibe typische Problemstellungen, die unter den Begriff \stichwort {Dreisatz} {} fallen, durch geeignete Beispiele.

}
{} {}




\inputaufgabegibtloesung
{6}
{

Zeige, dass jede \definitionsverweis {rationale Zahl}{}{}
\mavergleichskette
{\vergleichskette
{z }
{ \neq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine eindeutige Darstellung der Form
\mavergleichskettedisp
{\vergleichskette
{z }
{ =} { \pm \prod_p p^{{ \nu_p(z) } } }
{ } { }
{ } { }
{ } { }
} {}{}{} besitzt, wobei das \zusatzklammer {endliche} {} {} Produkt sich über \definitionsverweis {Primzahlen}{}{} erstreckt und die Exponenten
\mathl{{ \nu_p(z) } \in \Z}{} sind.

}
{} {}




\inputaufgabegibtloesung
{5}
{

Es sei
\mavergleichskettedisp
{\vergleichskette
{M }
{ =} { { \left\{ x \in \Q \mid 0 \leq x \leq 1 \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{.} Wir betrachten die beiden Verknüpfungen \zusatzklammer {Maximum und Minimum} {} {} \maabbeledisp {} {M \times M} {M } {(a,b)} { \operatorname{max} (a,b) } {,} und \maabbeledisp {} {M \times M} {M } {(a,b)} { \operatorname{min} (a,b) } {.} Zeige, dass $M$ mit diesen beiden Verknüpfungen \zusatzklammer {mit welchen neutralen Elementen} {?} {} ein \definitionsverweis {kommutativer Halbring}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{1}
{

Im Bruch
\mathdisp {{ \frac{ {{|}} {{|}} {{|}} {{|}} {{|}} {{|}} {{|}} {{|}} {{|}} }{ {{|}} {{|}} {{|}} {{|}} {{|}} {{|}} {{|}} {{|}} {{|}} {{|}} {{|}} {{|}} } }} { }
sind Zähler und Nenner im Strichsystem angegeben. Man gebe die entsprechende gekürzte Darstellung an.

}
{} {}




\inputaufgabegibtloesung
{5}
{

Zeige, dass der Algorithmus zur Berechnung der Halbierung eines Dezimalbruches korrekt ist.

}
{} {}