Kurs:Grundkurs Mathematik/Teil I/4/Klausur/latex

Aus Wikiversity
Zur Navigation springen Zur Suche springen

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}


%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 2 }

\renewcommand{\avier}{ 2 }

\renewcommand{\afuenf}{ 3 }

\renewcommand{\asechs}{ 6 }

\renewcommand{\asieben}{ 6 }

\renewcommand{\aacht}{ 3 }

\renewcommand{\aneun}{ 5 }

\renewcommand{\azehn}{ 4 }

\renewcommand{\aelf}{ 2 }

\renewcommand{\azwoelf}{ 2 }

\renewcommand{\adreizehn}{ 2 }

\renewcommand{\avierzehn}{ 2 }

\renewcommand{\afuenfzehn}{ 2 }

\renewcommand{\asechzehn}{ 4 }

\renewcommand{\asiebzehn}{ 3 }

\renewcommand{\aachtzehn}{ 3 }

\renewcommand{\aneunzehn}{ 4 }

\renewcommand{\azwanzig}{ 3 }

\renewcommand{\aeinundzwanzig}{ 64 }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabellezwanzig


\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Die \stichwort {Differenzmenge} {} $A \setminus B$ zu zwei Mengen $A,B$.

}{Eine \stichwort {surjektive} {} Abbildung \maabbdisp {f} {L} {M } {.}

}{Die \stichwort {Differenz} {}
\mathl{a-b}{} von natürlichen Zahlen $a,b$ mit
\mavergleichskette
{\vergleichskette
{b }
{ \leq }{a }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}{Die \stichwort {Addition} {} für ganze Zahlen.

}{Ein \stichwort {kommutativer} {} \definitionsverweis {Ring}{}{} $R$.

}{Ein \stichwort {archimedisch} {} angeordneter Körper $K$. }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Das \stichwort {allgemeine Distributivgesetz} {} für einen kommutativen Halbring.}{Die rekursive Beziehung zwischen den Binomialkoeffizienten \zusatzklammer {\stichwort {Pascalsches Dreieck} {}} {} {.}}{Der Satz über die Untergruppen von $\Z$.}

}
{} {}




\inputaufgabegibtloesung
{2}
{

Auf wie viele Arten kann man mit den üblichen Münzen einen Betrag von $10$ Cent begleichen?

}
{} {}




\inputaufgabegibtloesung
{2}
{

Anfang März beträgt die Zeitdifferenz zwischen Deutschland und Paraguay $4$ Stunden \zusatzklammer {in Paraguay wurde es $4$ Stunden später hell} {} {.} Am 25. März 2018 wurde in Deutschland die Uhr von der Winterzeit auf die Sommerzeit umgestellt, die Uhr wurde also um eine Stunde nachts von $2$ auf $3$ vorgestellt. In der gleichen Nacht wurde die Uhr in Paraguay umgestellt. Wie groß war die Zeitdifferenz nach der Umstellung?

}
{} {}




\inputaufgabegibtloesung
{3}
{

Es sei \maabbdisp {\varphi} {L} {M } {} eine \definitionsverweis {surjektive Abbildung}{}{.} Zeige, dass es eine Teilmenge
\mavergleichskette
{\vergleichskette
{S }
{ \subseteq }{L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} derart gibt, dass man $\varphi$ als Abbildung \maabbdisp {\varphi'} {S} {M } {} auffassen kann \zusatzklammer {$\varphi$ und $\varphi'$ unterscheiden sich nur hinsichtlich des Definitionsbereiches} {} {} und dass $\varphi'$ bijektiv ist.

}
{} {}




\inputaufgabegibtloesung
{6 (2+1+3)}
{

Professor Knopfloch kommt gelegentlich mit verschiedenen Socken und/oder mit verschiedenen Schuhen in die Universität. Er legt folgende Definitionen fest. \aufzaehlungvier{Ein Tag heißt \stichwort {sockenzerstreut} {,} wenn er verschiedene Socken anhat. }{Ein Tag heißt \stichwort {schuhzerstreut} {,} wenn er verschiedene Schuhe anhat. }{Ein Tag heißt \stichwort {zerstreut} {,} wenn er sockenzerstreut oder schuhzerstreut ist. }{Ein Tag heißt \stichwort {total zerstreut} {,} wenn er sowohl sockenzerstreut als auch schuhzerstreut ist. }

a) Vom Jahr
\mathl{2015}{} weiß man, dass $17$ Tage sockenzerstreut und $11$ Tage schuhzerstreut waren. Wie viele Tage waren in diesem Jahr maximal zerstreut und wie viele Tage waren minimal zerstreut? Wie viele Tage waren in diesem Jahr maximal total zerstreut und wie viele Tage waren minimal total zerstreut?

b) Vom Jahr
\mathl{2013}{} weiß man, dass $270$ Tage sockenzerstreut und $120$ Tage schuhzerstreut waren. Wie viele Tage waren in diesem Jahr maximal zerstreut und wie viele Tage waren minimal total zerstreut?

c) Erstelle eine Formel, die die Anzahl der sockenzerstreuten, der schuhzerstreuten, der zerstreuten und der total zerstreuten Tage in einem Jahr miteinander in Verbindung bringt.

}
{} {}




\inputaufgabegibtloesung
{6 (1+1+1+2+1)}
{

Wir betrachten die durch die Wertetabelle \wertetabelleachtausteilzeilen { $x$ }
{\mazeileundfuenf {1} {2} {3} {4} {5} }
{\mazeileunddrei {6} {7} {8} }
{ $F(x)$ }
{\mazeileundfuenf {3} {5} {1} {7} {8} }
{\mazeileunddrei {2} {6} {4} } gegebene Abbildung $F$ von
\mathl{M=\{1,2 , \ldots , 8\}}{} in sich selbst. \aufzaehlungfuenf{Erstelle eine Wertetabelle für
\mavergleichskette
{\vergleichskette
{F^2 }
{ = }{ F \circ F }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Erstelle eine Wertetabelle für
\mavergleichskette
{\vergleichskette
{F^3 }
{ = }{ F \circ F \circ F }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Begründe, dass sämtliche iterierten Hintereinanderschaltungen $F^n$ \definitionsverweis {bijektiv}{}{} sind. }{Bestimme für jedes
\mathl{x \in M}{} das minimale $n \in \N_+$ mit der Eigenschaft, dass
\mavergleichskettedisp
{\vergleichskette
{F^n (x) }
{ =} {x }
{ } { }
{ } { }
{ } { }
} {}{}{} ist. }{Bestimme das minimale $n \in \N_+$ mit der Eigenschaft, dass
\mavergleichskettedisp
{\vergleichskette
{F^n (x) }
{ =} {x }
{ } { }
{ } { }
{ } { }
} {}{}{} für alle
\mathl{x \in M}{} ist. }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Zeige durch vollständige Induktion, dass für jedes
\mathl{n \in \N}{} die Zahl
\mathdisp {6^{n+2} + 7^{2n+1}} { }
ein Vielfaches von $43$ ist.

}
{} {}




\inputaufgabegibtloesung
{5}
{

Beweise die Existenz der Zifferndarstellung für natürliche Zahlen.

}
{} {}




\inputaufgabegibtloesung
{4 (2+2)}
{

Gabi Hochster möchte sich die Fingernägel ihrer linken Hand \zusatzklammer {ohne den Daumennagel} {} {} lackieren, wobei die drei Farben
\mathl{B,G,R}{} zur Verfügung stehen. Sie möchte nicht, dass zwei benachbarte Finger die gleiche Farbe bekommen. \aufzaehlungzwei {Wie viele Möglichkeiten gibt es, wenn sie nur zwei Farben verwendet? } {Wie viele Möglichkeiten gibt es, wenn sie alle drei Farben verwendet? }

}
{} {}




\inputaufgabegibtloesung
{2}
{

Erläutere die Division mit Rest für natürliche Zahlen anhand zweier Eimer \zusatzklammer {das Fassungsvermögen der beiden Eimer sei ein Vielfaches von einem Liter} {} {.}

}
{} {}




\inputaufgabegibtloesung
{2}
{

Sei $G$ eine \definitionsverweis {Gruppe}{}{.} Zeige, dass
\mavergleichskettedisp
{\vergleichskette
{ { \left( x^{-1} \right) }^{-1} }
{ =} {x }
{ } { }
{ } { }
{ } { }
} {}{}{} für alle
\mathl{x \in G}{} ist.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Es sei $n$ eine ganze Zahl, von der die folgenden Eigenschaften bekannt sind: \aufzaehlungfuenf{$n$ ist negativ. }{$n$ ist ein Vielfaches von $8$, aber nicht von
\mathl{-16}{.} }{$n$ ist kein Vielfaches von
\mathl{36}{.} }{$n$ ist ein Vielfaches von $150$, aber nicht von
\mathl{125}{.} }{In der Primfaktorzerlegung von $n$ gibt es keine Primzahl, die größer als $5$ ist. } Was ist $n$?

}
{} {}




\inputaufgabegibtloesung
{2 (1+1)}
{

Es seien
\mathl{a,m,n}{} \definitionsverweis {natürliche Zahlen}{}{} mit
\mavergleichskette
{\vergleichskette
{a }
{ \geq }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} \aufzaehlungzwei {Bestimme
\mathl{\operatorname{ggT} (a^m,a^n)}{.} } {Bestimme
\mathl{\operatorname{kgV} (a^m,a^n)}{.} }

}
{} {}




\inputaufgabegibtloesung
{2}
{

Ein Apfelverkäufer verkauft
\mathl{2893}{} Äpfel für $3127$ Euro. Ein zweiter Apfelverkäufer verkauft $3417$ Äpfel für
\mathl{3693}{} Euro. Welches Angebot ist günstiger?

}
{} {}




\inputaufgabegibtloesung
{4}
{

Zeige, dass die Größergleichrelation $\geq$ auf $\Q$ mit der Addition und mit der Multiplikation verträglich ist.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Beweise den Satz über Wachstum und Injektivität für einen angeordneten Körper $K$.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Es sei $z$ eine \definitionsverweis {rationale Zahl}{}{.} Zeige, dass $z$ genau dann \definitionsverweis {ganzzahlig}{}{} ist, wenn
\mavergleichskettedisp
{\vergleichskette
{ \left \lfloor -z \right \rfloor }
{ =} { - \left \lfloor z \right \rfloor }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Zeige, dass eine \definitionsverweis {rationale Zahl}{}{} genau dann ein \definitionsverweis {Dezimalbruch}{}{} ist, wenn in der gekürzten Bruchdarstellung der Nenner die Form
\mathl{2^{i} \cdot 5^{j}}{} mit
\mathl{i,j \in \N}{} besitzt.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Berechne $1$ durch $41$ mit dem \definitionsverweis {Divisionsalgorithmus}{}{.}

}
{} {}