Kurs:Grundkurs Mathematik/Teil II/T3/Klausur/latex

Aus Wikiversity
Zur Navigation springen Zur Suche springen

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}


%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 5 }

\renewcommand{\avier}{ 1 }

\renewcommand{\afuenf}{ 2 }

\renewcommand{\asechs}{ 2 }

\renewcommand{\asieben}{ 3 }

\renewcommand{\aacht}{ 4 }

\renewcommand{\aneun}{ 3 }

\renewcommand{\azehn}{ 3 }

\renewcommand{\aelf}{ 2 }

\renewcommand{\azwoelf}{ 3 }

\renewcommand{\adreizehn}{ 5 }

\renewcommand{\avierzehn}{ 3 }

\renewcommand{\afuenfzehn}{ 4 }

\renewcommand{\asechzehn}{ 3 }

\renewcommand{\asiebzehn}{ 3 }

\renewcommand{\aachtzehn}{ 2 }

\renewcommand{\aneunzehn}{ 2 }

\renewcommand{\azwanzig}{ 3 }

\renewcommand{\aeinundzwanzig}{ 3 }

\renewcommand{\azweiundzwanzig}{ 2 }

\renewcommand{\adreiundzwanzig}{ 64 }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabellezweiundzwanzig


\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Eine \stichwort {Basis} {} im $K^m$.

}{Eine \stichwort {lineare} {} Abbildung \maabb {\varphi} {K^n} { K^m } {,} wobei $K$ einen \definitionsverweis {Körper}{}{} bezeichnet.

}{Eine \stichwort {Äquivalenzrelation} {} $\sim$ auf einer Menge $M$.

}{Ein \stichwort {Repräsentantensystem} {} zu einer Äquivalenzrelation $\sim$ auf einer Menge $M$.

}{Die \stichwort {Quotientenmenge} {} zu einer Äquivalenzrelation $\sim$ auf einer Menge $M$.

}{Eine \stichwort {Cauchy-Folge} {} ${ \left( x_n \right) }_{n \in \N }$ in einem angeordneten Körper $K$. }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Der Satz über die mathematische Struktur der Lösungsmenge eines homogenen linearen Gleichungssystems.}{Der Satz über die algebraische Struktur der Quotientenmenge zu einer Untergruppe
\mavergleichskette
{\vergleichskette
{H }
{ \subseteq }{G }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} in einer kommutativen Gruppe $G$.}{Der \stichwort {Satz über die Intervallschachtelung} {.}}

}
{} {}




\inputaufgabegibtloesung
{5 (3+1+1)}
{

In der großen Pause fährt das Süßwarenmobil von Raul Zucchero auf den Schulhof. Gabi kauft einen Schokoriegel, zwei Packungen Brausepulver und drei saure Zungen und zahlt dafür $1,30$ \euro . Lucy kauft zwei Schokoriegel, eine Packung Brausepulver und zwei saure Zungen und zahlt dafür $1,60$ \euro . Veronika kauft drei Packungen Brausepulver und vier saure Zungen und zahlt dafür einen Euro. \aufzaehlungdrei{Kann man daraus die Preise rekonstruieren? }{Wie sieht es aus, wenn man weiß, dass die Preise volle positive Centbeträge sind? }{Wie sieht es aus, wenn man weiß, dass die Preise positive Vielfache von Zehn-Cent-Beträgen sind? }

}
{} {}




\inputaufgabe
{1}
{

Inwiefern hat das Eliminationsverfahren für lineare Gleichungssysteme mit dem Induktionsprinzip zu tun?

}
{} {}




\inputaufgabegibtloesung
{2}
{

\aufzaehlungvier{Skizziere vier Geraden in der Ebene, die sich insgesamt in genau drei Punkten schneiden. }{Skizziere vier Geraden in der Ebene, die sich in keinem Punkt schneiden. }{Skizziere vier Geraden in der Ebene, die sich in einem Punkt schneiden. }{Skizziere vier Geraden in der Ebene, die sich insgesamt in sechs Punkten schneiden. }

}
{} {}




\inputaufgabegibtloesung
{2}
{

Bestimme die \definitionsverweis {inverse Matrix}{}{} von
\mathdisp {\begin{pmatrix} 3 { \frac{ 1 }{ 4 } } & 0 & 0 & 0 \\ 0 & { \frac{ 1 }{ 5 } } & 0 & 0 \\ 0 & 0 & 2 { \frac{ 2 }{ 7 } } & 0 \\ 0 & 0 & 0 & { \frac{ 3 }{ 11 } } \end{pmatrix}} { , }
die Angaben sind dabei als gemischte Brüche zu verstehen und das Ergebnis soll ebenso angegeben werden.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Es sei $B$ eine $n \times p$-\definitionsverweis {Matrix}{}{} und $A$ eine $m\times n$-Matrix und es seien
\mathdisp {K^p \stackrel{B}{\longrightarrow} K^n \stackrel{A}{\longrightarrow} K^m} { }
die zugehörigen \definitionsverweis {linearen Abbildungen}{}{.} Zeige, dass das \definitionsverweis {Matrixprodukt}{}{}
\mathl{A \circ B}{} die Hintereinanderschaltung der beiden linearen Abbildungen beschreibt.

}
{} {}




\inputaufgabegibtloesung
{4 (0.5+0.5+1+1+1)}
{






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Arctic food web.eps} }
\end{center}
\bildtext {} }

\bildlizenz { Arctic food web.svg } {} {Offnfopt} {Commons} {CC-by-sa 3.0} {}

Wir betrachten die Relation im nebenstehenden Diagramm, wobei eine Pfeil
\mathl{x \rightarrow y}{} bedeutet, dass $x$ von $y$ gefressen wird. \aufzaehlungfuenf{Was frisst ein Polarbear? }{Von wem wird ein Capelin gefressen? }{Welche Tiere stehen an der Spitze der Nahrungskette? }{Ist die Relation transitiv? }{Ist die Relation antisymmetrisch? }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Es sei
\mavergleichskette
{\vergleichskette
{M }
{ = }{\{a,b\} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine zweielementige Menge. Beschreibe vollständig \zusatzklammer {durch Auflistung aller zugehörigen Paare} {} {} die Relation auf der \definitionsverweis {Potenzmenge}{}{}
\mathl{\mathfrak {P} \, (M )}{,} die durch die Teilmengenbeziehung gegeben ist.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Seien \mathkor {} {M} {und} {N} {} Mengen und sei \maabb {f} {M} {N } {} eine Abbildung. Zeige, dass durch die Festlegung
\mavergleichskettedisp
{\vergleichskette
{x }
{ \sim} {y }
{ } { }
{ } { }
{ } { }
} {}{}{,} wenn
\mavergleichskettedisp
{\vergleichskette
{f(x) }
{ =} {f(y) }
{ } { }
{ } { }
{ } { }
} {}{}{,} eine \definitionsverweis {Äquivalenzrelation}{}{} auf $M$ definiert wird.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Zeige, dass die auf $\Z \times \N_+$ durch
\mathdisp {(a,b) \sim (c,d), \text{ falls } ad=bc} { , }
festgelegte \definitionsverweis {Relation}{}{} eine \definitionsverweis {Äquivalenzrelation}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Bestimme das inverse Element zu
\mathl{\overline{55}}{} in
\mathl{\Z/(93)}{.}

}
{} {}




\inputaufgabegibtloesung
{5}
{

Vergleiche
\mathdisp {\sqrt{3} + \sqrt{10} \text{ und } \sqrt{5} + \sqrt{7}} { . }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Berechne von Hand die Approximationen $x_1,x_2,x_3$ im Heron-Verfahren für die Quadratwurzel von $5$ zum Startwert $x_0=2$.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Beweise den Satz, dass der \definitionsverweis {Limes}{}{} einer \definitionsverweis {konvergenten Folge}{}{} in einem \definitionsverweis {angeordneten Körper}{}{} eindeutig bestimmt ist.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Entscheide, ob die \definitionsverweis {Folge}{}{}
\mavergleichskettedisp
{\vergleichskette
{ x_n }
{ =} {\frac{3n^3-n^2-7}{2n^3+n+8} }
{ } { }
{ } { }
{ } { }
} {}{}{} in $\Q$ \definitionsverweis {konvergiert}{}{} und bestimme gegebenenfalls den \definitionsverweis {Grenzwert}{}{.}

}
{} {}




\inputaufgabegibtloesung
{3}
{

Es sei
\mavergleichskette
{\vergleichskette
{T }
{ \subseteq }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Teilmenge aller reellen Zahlen, bei denen die $17.$ Nachkommastelle in der \zusatzklammer {kanonischen} {} {} Dezimalentwicklung eine $0$ ist. Welche Eigenschaften eines \definitionsverweis {Ideals}{}{} erfüllt diese Menge, welche nicht?

}
{} {}




\inputaufgabegibtloesung
{2}
{

Setze in das Polynom
\mathl{-5 X^3 - X^2 + \sqrt{2} X + \sqrt{5}}{} die Zahl $\sqrt{2}+\sqrt{3}$ ein.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Führe in $\Z/(5)[X]$ die \definitionsverweis {Division mit Rest}{}{} \anfuehrung{$P$ durch $T$}{} für die beiden \definitionsverweis {Polynome}{}{} \mathkor {} {P=X^3+4X^2+3X+4} {und} {T=3X^2+2X+1} {} durch.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Man finde ein \definitionsverweis {Polynom}{}{}
\mathdisp {f=a+bX+cX^2} { }
mit $a,b,c \in \R$ derart, dass die folgenden Bedingungen erfüllt werden.
\mathdisp {f(-1) =2,\, f(1) = 0,\, f(3) = 5} { . }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Es sei
\mavergleichskettedisp
{\vergleichskette
{f(x) }
{ =} { 2x^3-4x+5 }
{ } { }
{ } { }
{ } { }
} {}{}{.} Zeige, dass für alle
\mathl{x \in \R}{} die folgende Beziehung gilt: Wenn
\mavergleichskettedisp
{\vergleichskette
{ \betrag { x-3 } }
{ \leq} { { \frac{ 1 }{ 800 } } }
{ } { }
{ } { }
{ } { }
} {}{}{,} dann ist
\mavergleichskettedisp
{\vergleichskette
{ \betrag { f(x)-f(3) } }
{ \leq} { { \frac{ 1 }{ 10 } } }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{2}
{

Gibt es eine reelle Zahl, die in ihrer dritten Potenz, vermindert um das Vierfache ihrer zweiten Potenz, gleich der Quadratwurzel von $42$ ist?

}
{} {}