Kurs:Lineare Algebra OIIO/Bilinearformen, Quadriken und selbstadjungierte Operatoren
Begriffe und Eigenschaften
[Bearbeiten]Wir wollen Verallgemeinerungen des Skalarproduktes für beliebige Vektorräume untersuchen.
(Einschränkung: , d.h. ).
Definition 3.1
[Bearbeiten]- Eine Bilinearform (BF) auf ist eine Abbildung mit
- ,
- und
- .
Jeder BF ist eine quadratische Form (QF) zugeordnet durch ; bzw. eine Abbildung ist eine QF, wenn für eine BF .
Die Menge aller Bilinearformen (bzw. quadratischen Formen) bildet einen Vektorraum (bzw. ).
Lemma 3.2
[Bearbeiten]- Der Vektorraum der Bilinearformen ist die direkte Summe der Unterräume der symmetrischen BF und der alternierenden BF , d.h.
Beispiel: Jede quadratische Matrix induziert auf eine BF durch . ist symmetrisch oder alternierend gdw. symmetrisch oder schiefsymmetrisch .
Definition 3.3
[Bearbeiten]- Die Matrixdarstellung einer BF bzgl. einer Basis von ist definiert durch .
Offenbar gilt: Die Matrixdarstellung einer BF ist eine symmetrische (resp. schiefsymmetrische) Matrix gdw. die BF
symmetrisch (resp. alternierend) ist.
Testaufgaben:
- , ist eine linerare Abbildung;
- ;
- ;
- durch .
Diagonalisierung symmetrischer Bilinearformen und symmetrischer Gauß-Algorithmus
[Bearbeiten]Zur Motivation: Jede quadratische Form lässt sich als Summe von reinen Quadraten mit Vorzeichen darstellen. Dies wird durch quadratische Ergänzungen erreicht. Diese Aussage lässt sich nach folgendem Lemma direkt auf symmetrische BF übertragen.
Lemma 3.4 (Polarform)
[Bearbeiten]- Die Zuordnung induziert einen Isomorphismus . Die inverse Abbildung zu ist eingeschränkt auf .
Dies führt zur Frage einer Normalform für die Matrixdarstellung für Bilinearformen. Zunächst benötigen wir die Transformationsformel für die Matrixdarstellung.
Lemma 3.5
[Bearbeiten]- Die Matrixdarstellung einer BF transformiert sich bei Basiswechsel von zu wie folgt:
- .
- Die Menge aller Matrizen, die Matrixdarstellung ein und derselben BF sind, bilden eine Äquivalenzklasse ähnlicher Matrizen .
Bemerkung: Der Rang ist unabhängig von der Wahl einer Basis . Eine BF heißt nicht-ausgeartet, wenn .
Test: Warum ist ein Skalarprodukt nicht ausgeartet?
Normalformen der Matrixdarstellung einer BF gibt es jeweils für symmetrische und alternierende. So ist jede symmetrische BF diagonalisierbar. Der Beweis ist konstruktiv mittels des symmetrischen Gauß-Algorithmus. Hierbei wird nach jeder elementaren Zeilenoperation die entsprechende Spaltenoperation ausgeführt. Dabei bleibt die Symmetrie einer Matrix erhalten. Wir formulieren die Sätze nur für Matrizen.
Satz 3.6 (Diagonalisierbarkeit symmetrischer BF)
[Bearbeiten]- Ist die Matrix symmetrisch, dann gibt es eine Matrix mit ist Diagonalmatrix.
Eine Normierung der Diagonalelemente hängt vom Grundkörper ab.
Corollar 3.7
[Bearbeiten]- Zu jeder symmetrischen BF gibt es eine Basis , so daß eine Diagonalmatrix ist.
Ist gegeben, , dann gilt für die gesuchte Basis : und . Im Fall des Standardvektorraumes folgt: .
Eine Normierung der Diagonalelemente hängt vom Grundkörper ab.
Corollar 3.8
[Bearbeiten]- Die Elemente der Diagonalmatrix einer symmetrischen Matrix läßt sich wie folgt normieren:
- Für gilt: oder .
- Für gilt: , oder .
- Für gilt: sind quadratfreie ganze Zahlen.
Information: Ebenfalls auf dem symmetrischen Gauß-Algorithmus beruht die Normalform einer alternierenden BF:
Satz 3.9
[Bearbeiten]- Zu jeder schiefsymmetrischen Matrix gibt es eine reguläre Matrix , so dass außer 0 nur Diagonalblöcke der Form enthält.
Anwendung 1: (ON-Verfahren mittels des symmetrischen Gauß-Algorithmus)
[Bearbeiten]Gegeben sei eine Menge linear unabhängiger Vektoren (als Spalten einer Matrix ).
- Aufstellen der Gram’schen Matrix .
- Diagonalisierung von .
- Dann ist (gebildet aus den Vektoren ) ein Orthonormalsystem.
Test: Warum ist die Normalform einer Gram’schen Matrix beim symmetrischen Gauß-Algorithmus ?
Umkehrt ergibt sich aus dem ON-Verfahren, interpretiert als einfacher Gauss Algorithmus mit den Basisvektoren als
Zeilen einer Matrix A.
Anwendung 2: (Zerlegung in ein Produkt von Dreiecksmatrix und orthogonaler Matrix)
[Bearbeiten]- Jede reguläre Matrix ist Produkt einer unteren Dreiecksmatrix und einer orthogonalen Matrix . Für gilt insbesondere und für .
Testaufgabe: Die inverse Matrix einer Dreiecksmatrix ist wieder eine Dreiecksmatrix vom gleichen Typ!
Trägheitssatz für reelle symmetrische Bilinearformen
[Bearbeiten]Die Normalform einer komplexen symmetrischen BF ist eindeutig, da die Anzahl der auf der Hauptdiagonale gleich dem Rang ist. Im reellen Vektorraum bleibt dagegen noch etwas zu tun: Wir wollen zeigen, dass die Anzahlen der und auf der Hauptdiagonale der NF einer reellen symmetrischen BF eindeutig bestimmt sind. Ferner zeigen wir das Hauptminorenkriterium für positive Definitheit.
Satz 3.10 (Trägheitssatz von Sylvester)
[Bearbeiten]- Zu jeder symmetrischen BF auf einem reellen VR gibt es Zerlegungen , wobei und für (resp. für ) Dabei sind und eindeutig bestimmt.
Die Existenz einer solchen Zerlegung ergibt sich aus (3.6 – 8). Wir setzen . Dann ist und eingeschränkt auf einen komplementären Raum zu ist regulär. Somit bleibt der Satz für eine reguläre BF zu beweisen. Wenn es zwei Zerlegungen in positive und negative Unterräume verschiedener Dimensionen geben würde, dann wäre die Vereinigung einer Basis des ’größeren’ positiven Unterraumes mit der Basis des anderen negativen Unterraumes linear unabhängig!
Bemerkung
[Bearbeiten]Es gilt . Die Dimensionsdifferenz heißt Index von :
- .
Damit bestimmen Rang und Index den Typ einer reellen symmetrischen BF.
Definition 3.11
[Bearbeiten]- Eine reelle symmetrische BF bzw. die zugehörige QF heißt
- positiv, wenn , (gdw. );
- positiv definit, wenn , (gdw. für );
- negativ, wenn , (gdw. );
- negativ definit, wenn , (gdw. für );
- indefinit, wenn ;
- nicht ausgeartet, wenn .
Ein Skalarprodukt ist eine positiv definite symmetrische reelle BF. In der speziellen Relativitätstheorie betrachtet man das Raum-Zeitmodell mit einer nicht-Euklidischen Metrik induziert durch eine nicht ausgeartete quadratische Form von Index 2.
Satz 3.12 (Positivitätstest)
[Bearbeiten]- Eine reelle QF ist positiv definit gdw. eine Kette aufsteigender Hauptminoren einer Matrixdarstellung positiv ist. (Für sei , – die Untermatrix aus den ersten Zeilen und Spalten von .)
Bemerkung
[Bearbeiten]Ist eine symmetrische Matrix positiv definit, dann liefert der symmetrische Gauß-Algorithmus eine Zerlegung .
Klassifikation von reellen Quadriken
[Bearbeiten]Definition 3.13
[Bearbeiten]- Eine Quadrik im reellen affinen Punktraum ist die Lösungsmenge einer quadratischen Gleichung in Variablen:
- , wobei .
Quadriken in der Ebene sind genau die Kegelschnitte (Ellipse, Hyperbel, Parabel und ihre Entartungen). Verkürzt lässt sich eine Quadrik als Lösungsmenge der folgenden Gleichung schreiben:
- Sei die zugehörige symmetrische geränderte Matrix und der Koordinatenvektor eines Punktes, dann lautet die Gleichung für : .
Mittels des symmetrischen Gauß-Algorithmus angewendet auf (allerdings ohne Verwendung von Operationen mit der ersten Zeile und Spalte und ) erhält man folgende Normalform:
Satz 3.14 (affine Klassifikation)
[Bearbeiten]- Nach geeigneter affiner Koordinatentransformation hat die Gleichung einer reellen Quadrik im eine der folgenden Formen:
- Typ 1: , wobei (Mittelpunkts-Quadriken);
- Typ 2: , wobei (kegelartige Quadriken);
- Typ 3: , wobei (parabolische Quadriken).
Da sich die Ränge von und beim symmetrischen Gauß-Algorithmus nicht ändern, kann der Typ einer Quadrik schon am Rang abgelesen werden:
Corollar 3.15
[Bearbeiten]- Sind und zu einer Quadrik gehörende Matrizen, dann ist vom Typ 1 gdw. , vom Typ 2 gdw. und vom Typ 3 gdw. .
Selbstadjungierte Operatoren
[Bearbeiten]Sei ein reeller euklidischer VR (oder ein unitärer komplexer VR). Wir wollen eine spezielle Klasse von Operatoren untersuchen, die mittels orthogonaler (bzw. hermitescher) Transformationen diagonalisiert werden können, d. h. deren Matrixdarstellung bzgl. einer geeigneten ON-Basis Diagonalform annimmt.
Definition 3.16
[Bearbeiten]- Ein linearer Operator heißt selbstadjungiert, falls für alle Vektoren .
Beispiel
[Bearbeiten]Der Operator auf dem euklidischen Standardraum ist selbstadjungiert gdw. die Matrix symmetrisch ist.
Bemerkung
[Bearbeiten]Ist eine ON-Basis und selbstadjungiert, dann ist die Matrixdarstellung symmetrisch.
Test: Gilt die Umkehrung der Bemerkung?
Test: Ist ein sebstadjungierter Operator, dann ist eine symmetrische BF.
Test: Analog induziert jede symmetrische BF einen selbstadjungierten Operator !
Satz 3.17
[Bearbeiten]- Eigenvektoren zu verschiedenen Eigenwerten eines selbstadjungierten Operators L sind orthogonal zueinander. Allgemeiner: Ist , so ist auch .
Die wichtigste Eigenschaft selbstadjungierter Operatoren:
Satz 3.18
[Bearbeiten]- Alle Eigenwerte eines selbstadjungierten Operators sind reell.
Aus den letzten beiden Sätzen folgt mittels vollständiger Induktion der folgende Hauptsatz:
Theorem 3.19 (Hauptachsentransformation)
[Bearbeiten]- Selbstadjungierte Operatoren haben eine ONB aus Eigenvektoren.
Corollar 3.20
[Bearbeiten]- Zu einer reellen symmetrischen Matrix gibt es stets eine orthogonale Matrix , so daß eine Diagonalmatrix ist, deren Hauptdiagonalelemente die Eigenwerte von A sind.
Rezept: (Hauptachsentransformation)
[Bearbeiten]- Bestimmung der Eigenwerte und Eigenräume.
- Bestimmung einer ONB zusammengesetzt aus ONBn der Eigenräume.
- Die Spalten von C sind die Koordinaten der ONB.
Anwendung 1
[Bearbeiten]Mittels der Hauptachsentransformation (und aus dieser Anwendung entsteht der Name) lassen sich Quadriken im euklidischen Punktraum auf folgende Normalformen transformieren.
Satz 3.21 (euklidische Klassifikation)
[Bearbeiten]- In einer geeigneten ON-Koordinatentransformation (definiert durch eine ONB) hat die Gleichung einer Quadrik im euklidischen Punktraum eine der folgenden Formen:
- Typ 1: , wobei ;
- Typ 2: , wobei ;
- Typ 3: , wobei .
Rezept: (euklidische Normalform)
[Bearbeiten]- Diagonalisierung des quadratischen Anteils mittels der Hauptachsentransformation.
- Für Beseitigung der linearen Terme mittels einer Translation .
- Fixierung der rechten Seite der NF durch eine geeignete Drehung mit anschließender Translation im Kern der quadratischen Form. Danach ist die Gleichung nur noch zu normieren.
Anwendung 2 Singulärwerte
[Bearbeiten]Lemma 3.22
[Bearbeiten]- Sei eine reguläre quadratische Matrix, dann existiert eine Matrix mit , darüberhinaus besitzt reelle Eigenwerte, genannt, die Singulärwerte von :
ist positiv definit und es gibt eine orthogonale Matrix mit . ist eine Diagonalmatrix mit positiven Einträgen. Die Wurzeln der Diagonalelemente sind die Singulärwerte. Wir definieren .