Kurs:Mathematik für Anwender/Teil I/17/Klausur/latex

Aus Wikiversity

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}

%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 2 }

\renewcommand{\avier}{ 6 }

\renewcommand{\afuenf}{ 3 }

\renewcommand{\asechs}{ 8 }

\renewcommand{\asieben}{ 7 }

\renewcommand{\aacht}{ 2 }

\renewcommand{\aneun}{ 4 }

\renewcommand{\azehn}{ 2 }

\renewcommand{\aelf}{ 2 }

\renewcommand{\azwoelf}{ 5 }

\renewcommand{\adreizehn}{ 5 }

\renewcommand{\avierzehn}{ 3 }

\renewcommand{\afuenfzehn}{ 4 }

\renewcommand{\asechzehn}{ 5 }

\renewcommand{\asiebzehn}{ 64 }

\renewcommand{\aachtzehn}{ }

\renewcommand{\aneunzehn}{ }

\renewcommand{\azwanzig}{ }

\renewcommand{\aeinundzwanzig}{ }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabellesechzehn

\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Das \stichwort {offene Intervall} {}
\mathl{]a,b[}{.}

}{Der \stichwort {Betrag} {} einer komplexen Zahl
\mathl{z=a+b { \mathrm i}}{.}

}{Die \stichwort {bestimmte Divergenz} {} einer reellen Folge
\mathl{{ \left( x_n \right) }_{n \in \N }}{} gegen $- \infty$.

}{Das \stichwort {Cauchy-Produkt} {} zu zwei \definitionsverweis {Reihen}{}{} \mathkor {} {\sum_{ i = 0}^\infty a_{ i }} {und} {\sum_{ j = 0}^\infty b_{ j }} {} \definitionsverweis {reeller Zahlen}{}{.}

}{Die \stichwort {Differenzierbarkeit} {} einer \definitionsverweis {Abbildung}{}{} \maabbdisp {f} {\R} {\R } {} in einem Punkt
\mavergleichskette
{\vergleichskette
{ a }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}{Eine \stichwort {trigonalisierbare} {} \definitionsverweis {lineare Abbildung}{}{} \maabb {\varphi} {V} {V } {,} wobei $V$ ein \definitionsverweis {endlichdimensionaler}{}{} $K$-\definitionsverweis {Vektorraum}{}{} ist. }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Der Satz über die Existenz der Primfaktorzerlegung.}{Der Satz über die Ableitung der Exponentialfunktionen zu einer Basis
\mavergleichskette
{\vergleichskette
{a }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}{Der Satz über die Multilinearität der Determinante \zusatzklammer {mit Erläuterung} {} {.}}

}
{} {}




\inputaufgabegibtloesung
{2}
{

Finde einen möglichst einfachen aussagenlogischen Ausdruck, der die folgende tabellarisch dargestellte Wahrheitsfunktion ergibt. \wahrheitstabelledreieins{ } {\tabellenzeilevier {$ p $} {$ q $} {$ r $} {$? $} } {\tabellendoppelzeilevier {w} {w} {w} {f} {w} {w} {f} {f} } {\tabellendoppelzeilevier {w} {f} {w} {w} {w} {f} {f} {f} } {\tabellendoppelzeilevier {f} {w} {w} {f} {f} {w} {f} {f} } {\tabellendoppelzeilevier {f} {f} {w} {w} {f} {f} {f} {w} }

}
{} {}




\inputaufgabegibtloesung
{6 (1+1+4)}
{

Zu
\mathl{n \in \N}{} sei
\mavergleichskettedisp
{\vergleichskette
{[n] }
{ =} {\{0,1,2, \ldots, n \} }
{ } { }
{ } { }
{ } { }
} {}{}{.} Zu jedem
\mathl{n \in \N}{} und jedem
\mathl{0 \leq k \leq n}{} seien die Abbildungen \maabbdisp {D_k} {[n]} {[n+1] } {} durch
\mavergleichskettedisp
{\vergleichskette
{D_k(j) }
{ =} { \begin{cases} j, \text{ falls } j < k, \\ j+1 \text{ sonst}, \end{cases} }
{ } { }
{ } { }
{ } { }
} {}{}{} und die Abbildungen \maabbdisp {S_k} {[n+1]} {[n] } {} durch
\mavergleichskettedisp
{\vergleichskette
{S_k(j) }
{ =} { \begin{cases} j, \text{ falls } j \leq k, \\ j-1 \text{ sonst}, \end{cases} }
{ } { }
{ } { }
{ } { }
} {}{}{} definiert.

a) Erstelle eine Wertetabelle für \maabbdisp {D_3} {[4]} {[5] } {.}

b) Erstelle eine Wertetabelle für \maabbdisp {S_3} {[6]} {[5] } {.}

c) Beschreibe die durch die Wertetabelle \wertetabellesechsausteilzeilen { $j$ }
{\mazeileundfuenf {0} {1} {2} {3} {4} }
{ {5} }
{ $\varphi(j)$ }
{\mazeileundfuenf {0} {2} {2} {4} {5} }
{ {5} } gegebene Abbildung \maabbdisp {\varphi} {[5]} {[5] } {} als eine Hintereinanderschaltung von geeigneten $D_k$ und $S_i$.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Die offizielle Berechtigung für die Klausurteilnahme werde durch mindestens $200$ Punkte im Übungsbetrieb erworben. Professor Knopfloch sagt, dass es aber auf einen Punkt mehr oder weniger nicht ankomme. Zeige durch eine geeignete Induktion, dass man mit jeder Punkteanzahl zur Klausur zugelassen wird.

}
{} {}




\inputaufgabegibtloesung
{8 (5+3)}
{

Wir betrachten die alternierende Reihe der Stammbrüche
\mathl{\sum_{n=1}^\infty x_n}{} mit
\mavergleichskettedisp
{\vergleichskette
{x_n }
{ =} { (-1)^{n+1} { \frac{ 1 }{ n } } }
{ } { }
{ } { }
{ } { }
} {}{}{,} also
\mathdisp {1 - { \frac{ 1 }{ 2 } } + { \frac{ 1 }{ 3 } }- { \frac{ 1 }{ 4 } } + { \frac{ 1 }{ 5 } }- { \frac{ 1 }{ 6 } } + { \frac{ 1 }{ 7 } } - { \frac{ 1 }{ 8 } } + { \frac{ 1 }{ 9 } } \cdots} { , }
die bekanntlich konvergiert.

a) Zeige, dass die umgeordnete Reihe
\mathdisp {1 + { \frac{ 1 }{ 3 } } - { \frac{ 1 }{ 2 } } + { \frac{ 1 }{ 5 } }+ { \frac{ 1 }{ 7 } }- { \frac{ 1 }{ 4 } } + { \frac{ 1 }{ 9 } }+ { \frac{ 1 }{ 11 } }- { \frac{ 1 }{ 6 } } \cdots} { , }
konvergiert.

b) Man gebe eine Umordnung der Reihe an, die divergiert.

}
{} {}




\inputaufgabegibtloesung
{7 (3+3+1)}
{

Zeige, dass die Sinus- bzw. die Kosinusfunktion die folgenden Werte besitzt.

a)
\mavergleichskettedisp
{\vergleichskette
{ \sin { \frac{ \pi }{ 4 } } }
{ =} { \cos { \frac{ \pi }{ 4 } } }
{ =} { { \frac{ 1 }{ \sqrt{2} } } }
{ } { }
{ } { }
} {}{}{.}

b)
\mavergleichskettedisp
{\vergleichskette
{ \cos { \frac{ \pi }{ 3 } } }
{ =} {{ \frac{ 1 }{ 2 } } }
{ } { }
{ } { }
{ } { }
} {}{}{.}

c)
\mavergleichskettedisp
{\vergleichskette
{ \sin { \frac{ \pi }{ 3 } } }
{ =} {{ \frac{ \sqrt{3} }{ 2 } } }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{2}
{

Bestimme die Schnittpunkte des Einheitskreises mit der durch
\mavergleichskettedisp
{\vergleichskette
{y }
{ =} { { \frac{ 1 }{ 7 } } }
{ } { }
{ } { }
{ } { }
} {}{}{} gegebenen Geraden.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Zeige, dass eine \definitionsverweis {reelle Polynomfunktion}{}{} \maabbdisp {f} {\R} {\R } {} vom \definitionsverweis {Grad}{}{} $d \geq 1$ maximal
\mathl{d-1}{} \definitionsverweis {lokale Extrema}{}{} besitzt, und die reellen Zahlen sich in maximal $d$ Intervalle unterteilen lassen, auf denen abwechselnd $f$ \definitionsverweis {streng wachsend}{}{} oder \definitionsverweis {streng fallend}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Bestimme die \definitionsverweis {Ableitung}{}{} der \definitionsverweis {Funktion}{}{} \maabbdisp {\ln} {\R_+} {\R } {.}

}
{} {}




\inputaufgabegibtloesung
{2}
{

Bestimme den \definitionsverweis {Grenzwert}{}{}
\mathdisp {\operatorname{lim}_{ x \rightarrow 0 } \, { \frac{ x }{ e^x-1 } }} { . }

}
{} {}




\inputaufgabegibtloesung
{5}
{

Zeige, dass für jedes
\mavergleichskette
{\vergleichskette
{n }
{ \in }{\N_+ }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Abschätzung
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ 1 }{ n+1 } } + { \frac{ 1 }{ n+2 } } + \cdots + { \frac{ 1 }{ 2n } } }
{ \leq} { \ln 2 }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt. Tipp: Betrachte die Funktion
\mavergleichskette
{\vergleichskette
{ f(x) }
{ = }{ { \frac{ 1 }{ x } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} auf dem Intervall
\mathl{[1,2]}{.}

}
{} {}




\inputaufgabegibtloesung
{5 (1+1+1+1+1)}
{

Der $\R$-\definitionsverweis {Vektorraum}{}{} $\R^2$ sei zusätzlich mit der komponentenweisen Multiplikation versehen. Bestimme, welche der folgenden Teilmengen unter dieser Multiplikation abgeschlossen sind. \aufzaehlungfuenf{Die Punktmenge
\mathl{\{ \left( 0 , \, 0 \right), \left( 0 , \, 1 \right), \left( 1 , \, 0 \right) , \left( 1 , \, 1 \right) \}}{.} }{Die Gerade
\mathdisp {{ \left\{ \left( x , \, y \right) \mid y = 3x \right\} }} { . }
}{Das Achsenkreuz
\mathdisp {{ \left\{ \left( x , \, y \right) \mid x = 0 \text{ oder } y = 0 \right\} }} { . }
}{Die Hyperbel
\mathdisp {{ \left\{ \left( x , \, y \right) \mid xy = 1 \right\} }} { . }
}{Die Parabel
\mathdisp {{ \left\{ \left( x , \, y \right) \mid y = x^2 \right\} }} { . }
}

}
{} {}




\inputaufgabegibtloesung
{3}
{

Es sei $V$ ein $K$-\definitionsverweis {Vektorraum}{}{} und es seien
\mathl{v_1,v_2,v_3 \in V}{} Vektoren. Zeige, dass
\mathl{v_1,v_2,v_3}{} genau dann \definitionsverweis {linear unabhängig}{}{} sind, wenn
\mathl{v_1,v_1+v_2,v_1+v_2+v_3}{} linear unabhängig sind.

}
{} {}




\inputaufgabegibtloesung
{4 (1+1+2)}
{

Die Zeitungen $A,B$ und $C$ verkaufen Zeitungsabos und konkurrieren dabei um einen lokalen Markt mit $8 000$ potentiellen Lesern. Dabei sind innerhalb eines Jahres folgende Kundenbewegungen zu beobachten. \aufzaehlungvier{Die Abonnenten von $A$ bleiben zu $75\%$ bei $A$, $10\%$ wechseln zu $B$, $0 \%$ wechseln zu $C$ und $15 \%$ werden Nichtleser. }{Die Abonnenten von $B$ bleiben zu $70\%$ bei $B$, $10\%$ wechseln zu $A$, $10 \%$ wechseln zu $C$ und $10 \%$ werden Nichtleser. }{Die Abonnenten von $C$ bleiben zu $50\%$ bei $C$, $5\%$ wechseln zu $A$, $20 \%$ wechseln zu $B$ und $25 \%$ werden Nichtleser. }{Von den Nichtlesern entscheiden sich je $15\%$ für ein Abonnement von
\mathl{A,B}{} oder $C$, die übrigen bleiben Nichtleser. }

a) Erstelle die Matrix, die die Kundenbewegungen innerhalb eines Jahres beschreibt.

b) In einem bestimmten Jahr haben alle drei Zeitungen je $1500$ Abonnenten und es gibt $3500$ Nichtleser. Wie sieht die Verteilung ein Jahr später aus?

c) Die drei Zeitungen expandieren in eine zweite Stadt, wo es bislang überhaupt keine Zeitungen gibt, aber ebenfalls $8000$ potentielle Leser. Wie viele Leser haben dort die einzelnen Zeitungen \zusatzklammer {und wie viele Nichtleser gibt es noch} {} {} nach drei Jahren, wenn dort die gleichen Kundenbewegungen zu beobachten sind?

}
{} {}




\inputaufgabegibtloesung
{5}
{

Beweise den Satz über die Eigenvektoren zu verschiedenen Eigenwerten.

}
{} {}