Kurs:Mathematik für Anwender/Teil I/5/Klausur/latex

Aus Wikiversity

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}

%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 2 }

\renewcommand{\avier}{ 3 }

\renewcommand{\afuenf}{ 2 }

\renewcommand{\asechs}{ 4 }

\renewcommand{\asieben}{ 4 }

\renewcommand{\aacht}{ 3 }

\renewcommand{\aneun}{ 6 }

\renewcommand{\azehn}{ 2 }

\renewcommand{\aelf}{ 4 }

\renewcommand{\azwoelf}{ 4 }

\renewcommand{\adreizehn}{ 5 }

\renewcommand{\avierzehn}{ 4 }

\renewcommand{\afuenfzehn}{ 5 }

\renewcommand{\asechzehn}{ 6 }

\renewcommand{\asiebzehn}{ 4 }

\renewcommand{\aachtzehn}{ 64 }

\renewcommand{\aneunzehn}{ }

\renewcommand{\azwanzig}{ }

\renewcommand{\aeinundzwanzig}{ }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabellesiebzehn

\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Die \stichwort {leere} {} Menge.

}{Die \stichwort {Konvergenz} {} einer reellen Folge
\mathl{{ \left( x_n \right) }_{n \in \N }}{} gegen $x$.

}{Das \stichwort {Maximum} {} der Funktion \maabbdisp {f} {M} {\R } {} wird im Punkt
\mavergleichskette
{\vergleichskette
{x }
{ \in }{M }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \stichwort {angenommen} {.}

}{Eine \stichwort {Treppenfunktion} {} \maabbdisp {f} {I} {\R } {} auf einem beschränkten reellen Intervall
\mathl{I \subseteq \R}{.}

}{Eine \stichwort {Linearkombination} {} in einem $K$-\definitionsverweis {Vektorraum}{}{.}

}{Ein \stichwort {Eigenwert} {} zu einer \definitionsverweis {linearen Abbildung}{}{} \maabbdisp {\varphi} {V} {V } {} auf einem $K$-\definitionsverweis {Vektorraum}{}{} $V$. }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Der Satz über die Eindeutigkeit des Grenzwertes einer reellen Folge.}{Der Satz über die Differenz zwischen Stammfunktionen.}{Der Satz über die Dimension des Standardraumes.}

}
{} {}




\inputaufgabegibtloesung
{2}
{

Begründe das Beweisprinzip der vollständigen Induktion.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Zwei Personen, \mathkor {} {A} {und} {B} {,} liegen unter einer Palme, $A$ besitzt $2$ Fladenbrote und $B$ besitzt $3$ Fladenbrote. Eine dritte Person $C$ kommt hinzu, die kein Fladenbrot besitzt, aber $5$ Taler. Die drei Personen werden sich einig, für die $5$ Taler die Fladenbrote untereinander gleichmäßig aufzuteilen. Wie viele Taler gibt $C$ an $A$ und an $B$?

}
{} {}




\inputaufgabegibtloesung
{2}
{

Skizziere möglichst viele wesentlich verschiedene Konfigurationen von fünf Geraden in der Ebene, die sich insgesamt in vier Schnittpunkten treffen.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Zeige durch Induktion über $n$, dass es zu natürlichen Zahlen $a,n$ mit
\mavergleichskette
{\vergleichskette
{a }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} natürliche Zahlen $q,r$ mit
\mavergleichskette
{\vergleichskette
{r }
{ < }{a }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und mit
\mavergleichskettedisp
{\vergleichskette
{n }
{ =} { aq+r }
{ } { }
{ } { }
{ } { }
} {}{}{} gibt.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es seien die beiden komplexen Polynome
\mathdisp {P=X^3-2 { \mathrm i} X^2+4X-1 \text{ und } Q= { \mathrm i} X-3+2 { \mathrm i}} { }
gegeben. Berechne
\mathl{P(Q)}{} \zusatzklammer {es soll also $Q$ in $P$ eingesetzt werden} {} {.}

}
{} {}




\inputaufgabegibtloesung
{3}
{

Entscheide, ob die \definitionsverweis {Folge}{}{}
\mavergleichskettedisp
{\vergleichskette
{ x_n }
{ \defeq} { { \frac{ 3 \sin^{ 4 } n -7n^3 +11n }{ 5 n^3 -4n^2 - \cos n } } }
{ } { }
{ } { }
{ } { }
} {}{}{} in $\R$ \definitionsverweis {konvergiert}{}{} und bestimme gegebenenfalls den \definitionsverweis {Grenzwert}{}{.}

}
{} {}




\inputaufgabegibtloesung
{6}
{

Beweise den Zwischenwertsatz.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Bestimme die \definitionsverweis {Ableitung}{}{} der Funktion \maabbeledisp {f} {\R_+} {\R } {x} {f(x) = { \frac{ \ln { \left( 2x^2 \right) } }{ 7^x } } } {.}

}
{} {}




\inputaufgabegibtloesung
{4}
{

Bestimme die lokalen und globalen Extrema der Funktion \maabbeledisp {f} {\R} {\R } {t} {f(t) = t^2e^{-t} } {.}

}
{} {}




\inputaufgabegibtloesung
{4}
{

Bestimme das \definitionsverweis {Taylor-Polynom}{}{} der Ordnung $4$ zur Funktion
\mavergleichskettedisp
{\vergleichskette
{f(x) }
{ =} { e^{x^2} -x }
{ } { }
{ } { }
{ } { }
} {}{}{} im Entwicklungspunkt
\mavergleichskette
{\vergleichskette
{a }
{ = }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{5}
{

Es sei
\mavergleichskette
{\vergleichskette
{f(x) }
{ \defeq }{ { \frac{ x^2+4x-3 }{ x^2+7 } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Bestimme ein Polynom $h$ vom Grad $\leq 3$, das in den beiden Punkten
\mavergleichskette
{\vergleichskette
{x }
{ = }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{x }
{ = }{2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die gleichen linearen Approximationen wie $f$ besitzt.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Bestimme eine Stammfunktion von
\mathl{\sin^{ 3 } x}{.}

}
{} {}




\inputaufgabegibtloesung
{5}
{

Es sei \maabbdisp {\varphi} {\R^2} {\R^2 } {} die durch die Matrix
\mathl{M= \begin{pmatrix} 5 & 1 \\ 2 & 3 \end{pmatrix}}{} \zusatzklammer {bezüglich der Standardbasis} {} {} festgelegte lineare Abbildung. Bestimme die beschreibende Matrix zu $\varphi$ bezüglich der Basis
\mathl{\begin{pmatrix} 1 \\4 \end{pmatrix}}{} und
\mathl{\begin{pmatrix} 4 \\2 \end{pmatrix}}{.}

}
{} {}




\inputaufgabegibtloesung
{6 (2+4)}
{

Es sei
\mathl{K}{} ein Körper, \mathkor {} {V} {und} {W} {} seien $K$-\definitionsverweis {Vektorräume}{}{} und \maabbdisp {\varphi} {V} {W } {} sei eine $K$-\definitionsverweis {lineare Abbildung}{}{.}

a) Zeige, dass der Kern von $\varphi$ ein Untervektorraum von $V$ ist.

b) Beweise das Injektivitätskriterium für eine lineare Abbildung.

}
{} {}




\inputaufgabegibtloesung
{4}
{

a) Bestimme, ob die \definitionsverweis {komplexe}{}{} \definitionsverweis {Matrix}{}{}
\mavergleichskettedisp
{\vergleichskette
{M }
{ =} {\begin{pmatrix} 2+5 { \mathrm i} & 1-2 { \mathrm i} \\ 3-4 { \mathrm i} & 6-2 { \mathrm i} \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{} \definitionsverweis {invertierbar}{}{} ist.

b) Finde eine Lösung für das \definitionsverweis {inhomogene lineare Gleichungssystem}{}{}
\mavergleichskettedisp
{\vergleichskette
{ M \begin{pmatrix} z_1 \\z_2 \end{pmatrix} }
{ =} { \begin{pmatrix} 54 +72 { \mathrm i} \\0 \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}