Zum Inhalt springen

Kurs:Mathematik für Anwender (Osnabrück 2020-2021)/Teil I/Arbeitsblatt 18/latex

Aus Wikiversity

\setcounter{section}{18}






\zwischenueberschrift{Übungsaufgaben}






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Diciembre.jpg} }
\end{center}
\bildtext {Gar nicht mehr lange! Wir wünschen schon jetzt frohe Weihnachten!} }

\bildlizenz { Diciembre.jpg } {} {Lumentzaspi} {Commons} {PD} {}




\inputaufgabe
{}
{

Bestimme das \definitionsverweis {Treppenintegral}{}{} über
\mathl{[-3,+4]}{} zur \definitionsverweis {Treppenfunktion}{}{,} die durch
\mavergleichskettedisp
{\vergleichskette
{ f(t) }
{ =} { \begin{cases} 5 , \text{ falls } -3 \leq t \leq -2 \, , \\ -3 , \text{ falls } -2 < t \leq -1 \, , \\ \frac{3}{7} , \text{ falls } -1 < t < -\frac{1}{2} \, , \\ 13 , \text{ falls } t = - \frac{1}{2} \, , \\ \pi , \text{ falls } - \frac{1}{2} < t < e \, , \\ 0 , \text{ falls } e \leq t \leq 3 \, , \\ 1 , \text{ falls } 3 < t \leq 4 \, , \end{cases} }
{ } { }
{ } { }
{ } { }
} {}{}{} gegeben ist.

}
{} {}




\inputaufgabegibtloesung
{}
{

a) Unterteile das Intervall
\mathl{[-4,5]}{} in sechs gleichgroße Teilintervalle.

b) Bestimme das Treppenintegral derjenigen Treppenfunktion auf
\mathl{[-4,5]}{,} die auf der in a) konstruierten Unterteilung abwechselnd die Werte
\mathl{2}{} und $-1$ annimmt.

}
{} {}




\inputaufgabe
{}
{

Man gebe ein Beispiel für eine \definitionsverweis {Funktion}{}{} \maabb {f} {[a,b]} {\R } {} an, die nur endlich viele Werte annimmt, aber keine \definitionsverweis {Treppenfunktion}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Es seien \maabbdisp {f,g} {[a,b]} {\R } {} zwei \definitionsverweis {Treppenfunktionen}{}{.} Zeige, dass dann auch \aufzaehlungvier{
\mathl{f+g}{,} }{
\mathl{f \cdot g}{,} }{
\mathl{{\max { \left( f , g \right) } }}{,} }{
\mathl{{\min { \left( f , g \right) } }}{,} } Treppenfunktionen sind.

}
{} {}




\inputaufgabe
{}
{

Es sei \maabbdisp {f} {[a,b]} { [c,d] } {} eine \definitionsverweis {Treppenfunktion}{}{} und \maabbdisp {g} {[c,d]} {\R } {} eine \definitionsverweis {Funktion}{}{.} Zeige, dass die \definitionsverweis {Hintereinanderschaltung}{}{}
\mathl{g \circ f}{} ebenfalls eine Treppenfunktion ist.

}
{} {}




\inputaufgabe
{}
{

Man gebe ein Beispiel einer \definitionsverweis {stetigen Funktion}{}{} \maabbdisp {f} {[a,b]} {[c,d] } {} und einer \definitionsverweis {Treppenfunktion}{}{} \maabbdisp {g} {[c,d]} {\R } {} derart, dass die \definitionsverweis {Hintereinanderschaltung}{}{}
\mathl{g \circ f}{} keine Treppenfunktion ist.

}
{} {}




\inputaufgabe
{}
{

Berechne das \definitionsverweis {bestimmte Integral}{}{}
\mathdisp {\int_{ 0 }^{ 1 } t \, d t} { }
explizit über \definitionsverweis {obere}{}{} und \definitionsverweis {untere Treppenfunktionen}{}{.}

}
{} {}




\inputaufgabe
{}
{

Berechne das \definitionsverweis {bestimmte Integral}{}{}
\mathdisp {\int_{ 1 }^{ 2 } t^3 \, d t} { }
explizit über \definitionsverweis {obere}{}{} und \definitionsverweis {untere Treppenfunktionen}{}{.}

}
{} {}




\inputaufgabegibtloesung
{}
{

Zeige \zusatzklammer {ohne Stammfunktionen zu verwenden} {} {}
\mavergleichskettedisp
{\vergleichskette
{ \int_0^1 e^x dx }
{ =} { e-1 }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{}
{

Wir betrachten die Funktion \maabbeledisp {} {[1,2]} { \R } {t} {g(t) = { \frac{ 1 }{ t } } } {.} \aufzaehlungzwei {Beschreibe den Flächeninhalt zur unteren maximalen Treppenfunktion zu $g$ zur Intervallunterteilung
\mavergleichskette
{\vergleichskette
{1 }
{ \leq }{x }
{ \leq }{2 }
{ }{ }
{ }{ }
} {}{}{} in Abhängigkeit von $x$. } { Bestimme dasjenige $x$ zwischen \mathkor {} {1} {und} {2} {,} für das der Flächeninhalt zur unteren maximalen Treppenfunktion zu $g$ zur Intervallunterteilung
\mavergleichskette
{\vergleichskette
{1 }
{ \leq }{x }
{ \leq }{2 }
{ }{ }
{ }{ }
} {}{}{} maximal wird. Welchen Wert hat dieser Flächeninhalt? }

}
{} {}

Bei der vorstehenden Aufgabe kann man sich fragen, wie bei einer feineren Unterteilung, beispielsweise mit zwei Zwischenpunkten, das optimale untere Treppenintegral aussieht. Dies wird im zweiten Semester beantwortet, siehe Aufgabe 52.24.




\inputaufgabegibtloesung
{}
{

Es sei $I =[a,b]$ ein \definitionsverweis {kompaktes Intervall}{}{} und sei \maabbdisp {f} {I} {\R } {} eine \definitionsverweis {Funktion}{}{.} Es gebe eine \definitionsverweis {Folge}{}{} von \definitionsverweis {Treppenfunktionen}{}{}
\mathbed {{ \left( s_n \right) }_{ n \in \N }} {mit}
{s_n \leq f} {}
{} {} {} {} und eine Folge von Treppenfunktionen
\mathbed {{ \left( t_n \right) }_{ n \in \N }} {mit}
{t_n \geq f} {}
{} {} {} {.} Es sei vorausgesetzt, dass die beiden zugehörigen Folgen der Treppenintegrale \definitionsverweis {konvergieren}{}{} und dass ihre \definitionsverweis {Grenzwerte}{}{} übereinstimmen. Zeige, dass dann $f$ \definitionsverweis {Riemann-integrierbar}{}{} ist und dass
\mavergleichskettedisp
{\vergleichskette
{ \lim_{n \rightarrow \infty} \int_{ a }^{ b } s_n ( x) \, d x }
{ =} { \int_{ a }^{ b } f ( x) \, d x }
{ =} { \lim_{n \rightarrow \infty} \int_{ a }^{ b } t_n ( x) \, d x }
{ } { }
{ } { }
} {}{}{} gilt.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei $I$ ein \definitionsverweis {beschränktes Intervall}{}{} und \maabb {f} {I} { \R } {} eine nach unten beschränkte \definitionsverweis {stetige Funktion}{}{.} Es sei vorausgesetzt, dass das \definitionsverweis {Supremum}{}{} über alle \definitionsverweis {Treppenintegrale}{}{} zu äquidistanten unteren Treppenfunktionen existiert. Zeige, dass dann auch das Supremum zu allen Treppenintegralen zu unteren Treppenfunktionen \zusatzklammer {also das \definitionsverweis {Unterintegral}{}{}} {} {} existiert und mit dem zuerst genannten Supremum übereinstimmt.

}
{} {}




\inputaufgabe
{}
{

Es sei $I =[a,b]$ ein \definitionsverweis {kompaktes Intervall}{}{} und sei \maabbdisp {f} {I} {\R } {} eine \definitionsverweis {Funktion}{}{.} Zeige, dass die folgenden Aussagen äquivalent sind. \aufzaehlungdrei{Die Funktion $f$ ist \definitionsverweis {Riemann-integrierbar}{}{.} }{Es gibt eine Unterteilung
\mavergleichskette
{\vergleichskette
{a }
{ = }{a_0 }
{ < }{a_1 }
{ < }{ \cdots }
{ < }{a_n }
} {
\vergleichskettefortsetzung
{ = }{ b } { }{}
{ }{}
{ }{}
{}{}
}{}{} derart, dass die einzelnen Einschränkungen
\mavergleichskette
{\vergleichskette
{f_i }
{ \defeq }{ f |_{[a_{i-1},a_i]} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} Riemann-integrierbar sind. }{Für jede Unterteilung
\mavergleichskette
{\vergleichskette
{a }
{ = }{a_0 }
{ < }{a_1 }
{ < }{ \cdots }
{ < }{a_n }
} {
\vergleichskettefortsetzung
{ = }{ b } { }{}
{ }{}
{ }{}
{}{}
}{}{} sind die Einschränkungen
\mavergleichskette
{\vergleichskette
{f_i }
{ \defeq }{ f |_{[a_{i-1},a_i]} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} Riemann-integrierbar. }

}
{} {}




\inputaufgabe
{}
{

Es sei
\mathl{I =[a,b] \subseteq \R}{} ein \definitionsverweis {kompaktes Intervall}{}{} und es seien \maabb {f,g} {I} {\R } {} zwei \definitionsverweis {Riemann-integrierbare}{}{} \definitionsverweis {Funktionen}{}{.} Beweise die folgenden Aussagen. \aufzaehlungvier{Ist
\mathl{m \leq f(x) \leq M}{} für alle
\mathl{x \in I}{,} so ist
\mathl{m(b-a) \leq \int_{ a }^{ b } f ( t) \, d t \leq M(b-a)}{.} }{Ist
\mathl{f(x) \leq g(x)}{} für alle
\mathl{x \in I}{,} so ist
\mathl{\int_{ a }^{ b } f ( t) \, d t \leq \int_{ a }^{ b } g ( t) \, d t}{.} }{Es ist
\mathl{\int_{ a }^{ b } f(t)+g(t) \, d t = \int_{ a }^{ b } f ( t) \, d t + \int_{ a }^{ b } g ( t) \, d t}{.} }{Für
\mathl{c \in \R}{} ist
\mathl{\int_{ a }^{ b } (cf)(t) \, d t = c \int_{ a }^{ b } f ( t) \, d t}{.} }

}
{} {}




\inputaufgabe
{}
{

Es sei
\mathl{I=[a,b]}{} ein \definitionsverweis {kompaktes}{}{} \definitionsverweis {Intervall}{}{} und \maabb {f} {I} {\R } {} eine \definitionsverweis {Riemann-integrierbare}{}{} \definitionsverweis {Funktion}{}{.} Zeige, dass
\mathdisp {\betrag { \int_{ a }^{ b } f ( t) \, d t } \leq \int_{ a }^{ b } \betrag { f(t) } \, d t} { }
gilt.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei
\mathl{I=[a,b]}{} ein \definitionsverweis {kompaktes Intervall}{}{} und es seien \maabb {f,g} {I} {\R } {} zwei \definitionsverweis {Riemann-integrierbare}{}{} \definitionsverweis {Funktionen}{}{.} Zeige, dass auch ${\max { \left( f , g \right) } }$ Riemann-integrierbar ist.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mathl{I=[a,b]}{} ein \definitionsverweis {kompaktes Intervall}{}{} und es seien \maabb {f,g} {I} {\R } {} zwei \definitionsverweis {Riemann-integrierbare}{}{} \definitionsverweis {Funktionen}{}{.} Zeige, dass auch $fg$ Riemann-integrierbar ist.

}
{} {}






\zwischenueberschrift{Die Weihnachtsaufgabe für die ganze Familie}




\inputaufgabe
{}
{

Welches Bildungsgesetz liegt der Folge
\mathdisp {1,\,11,\, 21,\, 1211,\, 111221,\, 312211,\, ...} { }
zugrunde?

}
{} {(Es wird behauptet, dass diese Aufgabe für Grundschulkinder sehr einfach und für Mathematiker sehr schwierig ist.)}






\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{2}
{

Es seien \maabbdisp {f,g} {[a,b]} {\R } {} zwei \definitionsverweis {Treppenfunktionen}{}{.} Zeige, dass dann auch
\mathl{f+g}{} eine Treppenfunktion ist.

}
{} {}




\inputaufgabe
{4}
{

Bestimme das \definitionsverweis {bestimmte Integral}{}{}
\mathdisp {\int_{ a }^{ b } t^2 \, d t} { }
in Abhängigkeit von \mathkor {} {a} {und} {b} {} explizit über \definitionsverweis {obere}{}{} und \definitionsverweis {untere Treppenfunktionen}{}{.}

}
{} {}




\inputaufgabe
{4}
{

Berechne das \definitionsverweis {bestimmte Integral}{}{}
\mathdisp {\int_{ -2 }^{ 7 } -t^3+3t^2-2t+5 \, d t} { }
explizit über \definitionsverweis {obere}{}{} und \definitionsverweis {untere Treppenfunktionen}{}{.}

}
{} {}




\inputaufgabe
{3}
{

Zeige, dass für die Funktion \maabbeledisp {} {]0,1]} {\R } {x} { \frac{1}{x} } {,} weder das \definitionsverweis {Unterintegral}{}{} noch das \definitionsverweis {Oberintegral}{}{} existiert.

}
{} {}




\inputaufgabe
{6}
{

Zeige, dass für die Funktion \maabbeledisp {} {]0,1]} {\R } {x} { \frac{1}{ \sqrt{x} } } {,} das \definitionsverweis {Unterintegral}{}{} existiert, aber nicht das \definitionsverweis {Oberintegral}{}{.}

}
{} {Tipp: Verwende Aufgabe 9.7.}




\inputaufgabe
{5}
{

Es sei $I$ ein \definitionsverweis {kompaktes Intervall}{}{} und sei \maabbdisp {f} {I} {\R } {} eine monotone \definitionsverweis {Funktion}{}{.} Zeige, dass $f$ \definitionsverweis {Riemann-integrierbar}{}{} ist.

}
{} {}




\inputaufgabe
{4}
{

Wir betrachten die Abbildung \maabbdisp {f} {\N} {\N } {,} die dem Bildungsgesetz aus Aufgabe 18.17 entspricht \zusatzklammer {die natürlichen Zahlen sind dabei als endliche Ziffernfolgen im Zehnersystem zu verstehen} {} {.} \aufzaehlungvier{Ist $f$ wachsend? }{Ist $f$ surjektiv? }{Ist $f$ injektiv? }{Besitzt $f$ einen \definitionsverweis {Fixpunkt}{}{?} }

}
{} {}