Kurs:Mathematik für Anwender (Osnabrück 2020-2021)/Teil II/Arbeitsblatt 53/latex

Aus Wikiversity

\setcounter{section}{53}






\zwischenueberschrift{Übungsaufgaben}




\inputaufgabegibtloesung
{}
{

Finde zwei natürliche Zahlen, deren Summe
\mathl{65}{} und deren Produkt $1000$ ist.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass die Abbildung \maabbeledisp {\varphi} {{\mathbb C}^2} {{\mathbb C}^2 } {(x,y)} {(x+y,xy) } {,} \definitionsverweis {surjektiv}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{}
{

Man gebe ein Beispiel einer bijektiven \definitionsverweis {differenzierbaren Abbildung}{}{} \maabbdisp {\varphi} {U_1} {U_2 } {} mit einer \definitionsverweis {stetigen}{}{} \definitionsverweis {Umkehrabbildung}{}{} $\psi$ derart, dass $\psi$ nicht differenzierbar ist.

}
{} {}




\inputaufgabegibtloesung
{}
{

Man gebe ein Beispiel einer Funktion \maabbdisp {f} {\R} {\R } {,} das zeigt, dass im Satz über die \zusatzklammer {lokale} {} {} Umkehrbarkeit die Bijektivität im Allgemeinen nur auf echten Teilintervallen besteht.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass die \definitionsverweis {Abbildung}{}{} \maabbeledisp {} {\R^2} {\R \times \R_+ } {(x,y)} {(x, e^{x+y}) } {,} \definitionsverweis {bijektiv}{}{} ist. Man gebe explizit eine \definitionsverweis {Umkehrabbildung}{}{} an.

}
{} {}




\inputaufgabe
{}
{

Es sei \maabbeledisp {f} {\R} {\R } {x} {f(x) } {,} eine \definitionsverweis {Funktion}{}{.} Zeige, dass die Abbildung \maabbeledisp {} {\R^2} {\R^2 } {(x,y)} {(x,y+f(x)) } {,} \definitionsverweis {bijektiv}{}{} ist. Bestimme explizit eine Umkehrabbildung.

}
{} {} Was besagt in der vorstehenden Aufgabe der Satz über die Umkehrabbildung, wenn $f$ differenzierbar ist?




\inputaufgabe
{}
{

Es seien \maabbdisp {f_1 , \ldots , f_n} {\R} {\R } {} \definitionsverweis {stetig differenzierbare Funktionen}{}{.} Betrachte die Abbildung \maabbeledisp {f} {\R^n} {\R^n } {(x_1 , \ldots , x_n)} { (f_1(x_1) , \ldots , f_n(x_n)) } {,}Zeige: \aufzaehlungdrei{Die Abbildung $f$ ist \definitionsverweis {differenzierbar}{}{.} }{Das totale Differential von $f$ in $0$ ist genau dann bijektiv, wenn von sämtlichen Funktionen $f_i, \, i =1 , \ldots , n$, die \definitionsverweis {Ableitungen}{}{} in $0$ nicht $0$ sind. }{$f$ ist genau dann auf einer offenen Umgebung von $0$ bijektiv, wenn die einzelnen $f_i$ in einer geeigneten Umgebung bijektiv sind. }

}
{} {}




\inputaufgabe
{}
{

Betrachte die \definitionsverweis {Abbildung}{}{} \maabbeledisp {\varphi} {\R^3} {\R^3 } {(x,y,z)} {( \sin xy ,yz \cos \left( x^2 \right) ,e^{xyz}) } {.} Zeige, dass $\varphi$ im Punkt
\mathl{P=(1, \pi,1)}{} \definitionsverweis {lokal umkehrbar}{}{} ist, und bestimme das \definitionsverweis {totale Differential}{}{} der \definitionsverweis {Umkehrabbildung}{}{} im Punkt
\mathl{Q=\varphi(P)}{.}

}
{} {}




\inputaufgabe
{}
{

Es seien \mathkor {} {P= a+bX+cY+ \ldots} {und} {Q= d+eX+fY+ \ldots} {} Polynome in zwei Variablen und \maabbeledisp {\varphi} {\R^2} {\R^2 } {(x,y)} {( P(x,y),Q(x,y)) } {,} die zugehörige Abbildung. Wann besitzt $\varphi$ in
\mathl{\varphi(0,0)}{} lokal eine Umkehrabbildung? Wie sieht in diesem Fall das totale Differential der Umkehrabbildung im Punkt
\mathl{\varphi(0,0)}{} aus?

}
{} {}





\inputaufgabegibtloesung
{}
{

Es sei \maabbdisp {f} { \R} {\R } {} eine nullstellenfreie \definitionsverweis {stetig differenzierbare Funktion}{}{} und sei $g$ eine \definitionsverweis {Stammfunktion}{}{} zu $f$. Es sei \maabbdisp {\varphi} {\R^2} { \R^2 } {} mit
\mavergleichskettedisp
{\vergleichskette
{\varphi(x,y) }
{ =} { \left( { \frac{ x }{ f(y) } } , \, g(y) \right) }
{ } { }
{ } { }
{ } { }
} {}{}{.}

a) Bestimme die \definitionsverweis {Jacobi-Matrix}{}{} zu $\varphi$.

b) Zeige, dass man auf $\varphi$ in jedem Punkt den Satz über die lokale Umkehrbarkeit anwenden kann.

c) Zeige, dass $\varphi$ injektiv ist.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei \maabbdisp {\varphi} {\R^n} { \R^n } {} eine \definitionsverweis {total differenzierbare}{}{} Abbildung derart, dass es eine reelle Zahl
\mathl{c \in [0,1[}{} gibt mit
\mavergleichskettedisp
{\vergleichskette
{ \Vert { \left(D\varphi\right)_{P} } \Vert }
{ \leq} { c }
{ } { }
{ } { }
{ } { }
} {}{}{} für alle
\mathl{P \in \R^n}{.} Zeige, dass $\varphi$ die Voraussetzungen des Banachschen Fixpunktsatzes erfüllt.

}
{} {}

Im Beweis des Umkehrsatzes wurde mit folgender Definition gearbeitet.


Es seien \mathkor {} {V} {und} {W} {} \definitionsverweis {euklidische Vektorräume}{}{} und sei \maabbdisp {\varphi} {V} {W } {} eine \definitionsverweis {lineare Abbildung}{}{.} Dann nennt man
\mavergleichskettedisp
{\vergleichskette
{ \Vert {\varphi} \Vert }
{ \defeq} { {\operatorname{sup} \, ( \Vert { \varphi(v)} \Vert , \Vert {v} \Vert = 1 ) } }
{ } { }
{ } { }
{ } { }
} {}{}{} die \definitionswort {Norm}{} von $\varphi$.





\inputaufgabe
{}
{

Begründe, warum die \definitionsverweis {Norm}{}{} einer \definitionsverweis {linearen Abbildung}{}{} zwischen \definitionsverweis {euklidischen Vektorräumen}{}{} wohldefiniert ist.

}
{} {}




\inputaufgabe
{}
{

Es seien \mathkor {} {V} {und} {W} {} \definitionsverweis {euklidische Vektorräume}{}{} und sei \maabbdisp {\varphi} {V} {W } {} eine \definitionsverweis {lineare Abbildung}{}{.} Zeige, dass es einen Vektor
\mathbed {v \in V} {}
{\Vert {v} \Vert =1} {}
{} {} {} {,} mit
\mavergleichskettedisp
{\vergleichskette
{ \Vert {\varphi(v) } \Vert }
{ =} { \Vert {\varphi} \Vert }
{ } { }
{ } { }
{ } { }
} {}{}{} gibt.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass die \definitionsverweis {Norm}{}{} einer \definitionsverweis {linearen Abbildung}{}{} zwischen \definitionsverweis {euklidischen Vektorräumen}{}{} folgende Eigenschaften erfüllt. \aufzaehlungvier{Es ist $\Vert {\varphi(v)} \Vert \leq \Vert {\varphi} \Vert \cdot \Vert {v} \Vert$. }{Es ist $\Vert {\varphi} \Vert = 0$ genau dann, wenn $\varphi=0$ ist. }{Es ist $\Vert {c \varphi } \Vert = \betrag { c } \cdot \Vert {\varphi} \Vert$. }{Es ist $\Vert {\varphi_1 + \varphi_2 } \Vert \leq \Vert {\varphi_1} \Vert + \Vert {\varphi_2} \Vert$. }

}
{} {}




\inputaufgabe
{}
{

Sei $V$ ein \definitionsverweis {euklidischer Vektorraum}{}{} und sei \maabbdisp {\varphi} {V} {V } {} eine \definitionsverweis {lineare Abbildung}{}{.} Es sei $\lambda \in \R$ ein \definitionsverweis {Eigenwert}{}{} von $\varphi$. Zeige, dass die Abschätzung
\mavergleichskettedisp
{\vergleichskette
{ \betrag { \lambda } }
{ \leq} { \Vert {\varphi} \Vert }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}
{} {}




\inputaufgabe
{}
{

Sei $V$ ein \definitionsverweis {euklidischer Vektorraum}{}{} und sei \maabbdisp {\varphi} {V} {V } {} eine \definitionsverweis {lineare Abbildung}{}{} derart, dass eine \definitionsverweis {Orthogonalbasis}{}{} aus \definitionsverweis {Eigenvektoren}{}{} von $\varphi$ existiert. Zeige, dass
\mavergleichskettedisp
{\vergleichskette
{ \Vert {\varphi} \Vert }
{ =} { {\max { \left( \betrag { \lambda } , \lambda \text{ ist Eigenwert von } \varphi \right) } } }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}
{} {}




\inputaufgabe
{}
{

Es sei \maabbeledisp {\varphi} {\R^n} {\R } { (x_1 , \ldots , x_{ n }) } { \sum_{i = 1}^n a_i x_i } {,} eine \definitionsverweis {lineare Abbildung}{}{} $\neq 0$. Bestimme einen Vektor $v \in \R^n$ auf der \definitionsverweis {abgeschlossenen Kugel}{}{} mit Mittelpunkt $0$ und Radius $1$, an dem die \definitionsverweis {Funktion}{}{} \maabbeledisp {} { B \left( 0,1 \right) } {\R } {v} { \betrag { \varphi(v) } } {,} ihr \definitionsverweis {Maximum}{}{} annimmt. Bestimme die \definitionsverweis {Norm}{}{} von $\varphi$.

}
{} {}

Mit diffeomorph ist im Folgenden stets $C^1$-diffeomorph gemeint.


\inputaufgabe
{}
{

Definiere explizit einen \definitionsverweis {Diffeomorphismus}{}{} zwischen $\R^n$ und einer offenen Kugel
\mathl{U { \left( 0,r \right) } \subseteq \R^n}{.}

}
{} {}




\inputaufgabe
{}
{

Zeige, dass eine offene Kreisscheibe
\mathl{U { \left( P,r \right) } \subseteq \R^2}{} \zusatzklammer {\mathlk{r >0}{}} {} {} und ein offenes Rechteck
\mathl{]a,b[ \times ]c,d[}{} \zusatzklammer {\mathlk{b >a, d>c}{}} {} {} \definitionsverweis {diffeomorph}{}{} sind.

}
{} {}




\inputaufgabe
{}
{

Zeige die folgenden Aussagen. \aufzaehlungvier{Die Identität ist ein Diffeomorphismus. }{Eine lineare bijektive Abbildung ist ein Diffeomorphismus. }{Die Umkehrabbildung eines Diffeomorphismus ist wieder ein Diffeomorphismus. }{Die Hintereinanderschaltung von Diffeomorphismen ist ein Diffeomorphismus. }

}
{} {}




\inputaufgabe
{}
{

Es seien
\mathl{U_1 \subseteq V_1}{,}
\mathl{U_2 \subseteq V_2}{,}
\mathl{U_3 \subseteq V_3}{,} und
\mathl{U_4 \subseteq V_4}{} \definitionsverweis {offene Teilmengen}{}{} in reellen endlichdimensionalen Vektorräumen. Es seien \maabbdisp {\varphi} { U_1} {U_3 } {} und \maabbdisp {\psi} {U_2} {U_4 } {} $C^1$-\definitionsverweis {Diffeomorphismen}{}{.} Zeige, dass auch die \definitionsverweis {Produktabbildung}{}{} \maabbdisp {\varphi \times \psi} {U_1 \times U_3} {U_2 \times U_4 } {} ein $C^1$-Diffeomorphismus ist.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskettedisp
{\vergleichskette
{U_1 }
{ =} { { \left\{ (x,y) \in \R^2 \mid x>y \right\} } }
{ \subseteq} {\R^2 }
{ } { }
{ } { }
} {}{}{} und
\mavergleichskettedisp
{\vergleichskette
{U_2 }
{ =} { { \left\{ (u,v) \in \R^2 \mid u^2 > 4v \right\} } }
{ \subseteq} {\R^2 }
{ } { }
{ } { }
} {}{}{.} a) Skizziere \mathkor {} {U_1} {und} {U_2} {.}

b) Zeige, dass \mathkor {} {U_1} {und} {U_2} {} \definitionsverweis {offen}{}{} sind.

c) Zeige, dass die Abbildung \maabbeledisp {\varphi} {U_1} {U_2 } {(x,y)} { (x+y,xy) } {,} ein \definitionsverweis {Diffeomorphismus}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Bestimme die \definitionsverweis {regulären Punkte}{}{} der \definitionsverweis {Abbildung}{}{} \maabbeledisp {\varphi} {\R^2} {\R^2 } {(x,y)} {(x^2y,x- \sin y ) } {.} Zeige, dass $\varphi$ in
\mathl{P=(1,0)}{} regulär ist und bestimme das \definitionsverweis {totale Differential}{}{} der \definitionsverweis {Umkehrabbildung}{}{} von $\varphi |_U$ in $\varphi(P)$, wobei $U$ eine offene Umgebung von $P$ sei \zusatzklammer {die nicht explizit angegeben werden muss} {} {.}

}
{} {}





\inputaufgabegibtloesung
{}
{

Man gebe für jedes
\mathl{n \in \N_+}{} eine bijektive, \definitionsverweis {total differenzierbare}{}{} Abbildung \maabbdisp {\varphi_n} {\R^n} {\R^n } {} an, für die das totale Differential in mindestens einem Punkt nicht \definitionsverweis {regulär}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Es seien
\mathl{U,V,W}{} \definitionsverweis {euklidische Vektorräume}{}{} und seien \mathkor {} {\varphi:U \longrightarrow V} {und} {\psi:V \longrightarrow W} {} \definitionsverweis {differenzierbare Abbildungen}{}{.} Es sei $\varphi$ \definitionsverweis {regulär}{}{} in
\mavergleichskette
{\vergleichskette
{P }
{ \in }{U }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und $\psi$ regulär in
\mavergleichskette
{\vergleichskette
{Q }
{ = }{\varphi(P) }
{ \in }{ V }
{ }{ }
{ }{ }
} {}{}{.} Ist dann
\mathl{\psi \circ \varphi}{} regulär in $P$? Unter welchen Voraussetzungen stimmt dies?

}
{} {}




\inputaufgabe
{}
{

Das \definitionsverweis {komplexe}{}{} Quadrieren \maabbeledisp {} {{\mathbb C}} {{\mathbb C} } {z} {z^2 } {,} kann man reell als \maabbeledisp {\varphi} {\R^2} {\R^2 } { x+{ \mathrm i}y = (x,y)} {(x+ { \mathrm i} y)^2 = x^2-y^2 +2{ \mathrm i}xy = (x^2-y^2,2xy) } {,} schreiben. Untersuche $\varphi$ auf \definitionsverweis {reguläre Punkte}{}{.} Auf welchen \zusatzklammer {möglichst großen} {} {} offenen Teilmengen ist $\varphi$ \definitionsverweis {umkehrbar}{}{?}

}
{} {}




\inputaufgabe
{}
{

Finde möglichst große offene Teilmengen
\mathl{G \subseteq {\mathbb C} \cong \R^2}{} und
\mathl{H \subseteq {\mathbb C}}{} derart, dass die Abbildung \maabbeledisp {} {{\mathbb C}} {{\mathbb C} } {z} {z^3 } {,} einen \definitionsverweis {Diffeomorphismus}{}{} von $G$ nach $H$ induziert.

}
{} {}





\inputaufgabegibtloesung
{}
{

Wir betrachten die Abbildung \maabbeledisp {\varphi} { \R \setminus \{0\} \times \R } {\R^2 } {(x,y)} {\left( { \frac{ y^2 }{ x } } , \, { \frac{ y^3 }{ x^2 } } \right) } {.}

a) Bestimme die regulären Punkte der Abbildung $\varphi$.

b) Zeige, dass $\varphi$ in
\mathl{P=(1,2)}{} lokal eine differenzierbare Umkehrabbildung
\mathl{\psi= \varphi^{-1}}{} besitzt, und bestimme das totale Differential von $\psi$ im Punkt
\mathl{\varphi(P)}{.}

c) Man gebe alle Punkte
\mathl{Q \in \R \setminus \{0\} \times \R}{} an, in denen $\varphi$ nicht lokal invertierbar ist.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass die Transformation \maabbeledisp {} {[0,2 \pi] \times [0,1]} { B \left( 0,1 \right) } {(\alpha,w)} {( \sqrt{w} \cos \alpha, \sqrt{w} \sin \alpha) } {,} auf geeigneten offenen Teilmengen ein \definitionsverweis {Diffeomorphismus}{}{} ist und berechne die \definitionsverweis {Jacobi-Determinante}{}{} in jedem Punkt.

}
{} {}




\inputaufgabe
{}
{

Es seien
\mathl{P_1 , \ldots , P_n}{} und
\mathl{Q_1 , \ldots , Q_n}{} Punkte in der Ebene $\R^2$. Zeige, dass die beiden offenen Mengen
\mathl{U=\R^2 \setminus \{P_1 , \ldots , P_n\}}{} und
\mathl{V=\R^2 \setminus \{Q_1 , \ldots , Q_n\}}{} zueinander \definitionsverweis {diffeomorph}{}{} sind.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskettedisp
{\vergleichskette
{T }
{ =} { { \left\{ { \frac{ 1 }{ n } } \mid n \in \N_+ \right\} } \cup \{0\} }
{ } { }
{ } { }
{ } { }
} {}{}{,}
\mavergleichskettedisp
{\vergleichskette
{U }
{ =} {\R \setminus T }
{ } { }
{ } { }
{ } { }
} {}{}{} und
\mavergleichskettedisp
{\vergleichskette
{V }
{ =} {\R \setminus \N }
{ } { }
{ } { }
{ } { }
} {}{}{.} Zeige, dass \mathkor {} {U} {und} {V} {} zueinander \definitionsverweis {diffeomorph}{}{} sind.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskettedisp
{\vergleichskette
{T }
{ =} { { \left\{ \left( { \frac{ 1 }{ n } },0 \right) \mid n \in \N_+ \right\} } \cup \{(0,0)\} }
{ } { }
{ } { }
{ } { }
} {}{}{,}
\mavergleichskettedisp
{\vergleichskette
{U }
{ =} {\R^2 \setminus T }
{ } { }
{ } { }
{ } { }
} {}{}{} und
\mavergleichskettedisp
{\vergleichskette
{V }
{ =} {\R^2 \setminus \N }
{ } { }
{ } { }
{ } { }
} {}{}{.} Zeige, dass \mathkor {} {U} {und} {V} {} zueinander nicht \definitionsverweis {homöomorph}{}{} sind.

}
{} {}




\inputaufgabegibtloesung
{}
{

Wir betrachten die Abbildung \maabbeledisp {\varphi} {\R^6} {\R^4 } {(a,b,c,d,u,v)} {(au+bv+c+d,ad-bc,ac-b^2,bd-c^2) } {.}

a) Bestimme die Jacobi-Matrix zu dieser Abbildung.

b) Zeige, dass $\varphi$ im Nullpunkt nicht regulär ist.

c) Zeige, dass $\varphi$ in
\mathl{(1,1,0,0,1,1)}{} regulär ist.

}
{} {}




\inputaufgabegibtloesung
{}
{

Wir betrachten die Abbildung \maabbeledisp {F} {\R^3} {\R^3 } {(x,y,z)} {(x+y+z,xy+xz+yz,xyz) } {.} Zeige, dass ein Punkt
\mathl{P=(x,y,z)}{} genau dann ein \definitionsverweis {regulärer Punkt}{}{} von $F$ ist, wenn die Koordinaten von $P$ paarweise verschieden \zusatzklammer {also $x \neq y$, $x \neq z$ und
\mathl{y \neq z}{}} {} {} sind.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei
\mathl{G \subseteq \R^n}{} \definitionsverweis {offen}{}{} und \maabbdisp {\varphi} {G} {\R^n } {} eine \definitionsverweis {stetig differenzierbare}{}{} Abbildung. Zeige, dass die Menge der \definitionsverweis {regulären Punkte}{}{} von $\varphi$ offen ist.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es seien \mathkor {} {V} {und} {W} {} endlichdimensionale reelle Vektorräume,
\mavergleichskette
{\vergleichskette
{U }
{ \subseteq }{V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{U' }
{ \subseteq }{W }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \definitionsverweis {offene Teilmengen}{}{} und \maabbdisp {\varphi} {U} {U' } {} ein \definitionsverweis {Diffeomorphismus}{}{.} Es sei \maabbeledisp {F} {I \times U} {V } {(t,x)} {F(t,x) } {,} ein \definitionsverweis {Vektorfeld}{}{} auf $U$. Es sei $G$ das durch
\mavergleichskettedisp
{\vergleichskette
{ G(t,y) }
{ \defeq} { { \left( D \varphi \right) }_{ \varphi^{-1}(y)} { \left( F(t, \varphi^{-1} (y)) \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{} definierte Vektorfeld auf $U'$. Zeige, dass \maabbdisp {\alpha} {J} {U } {} genau dann eine \definitionsverweis {Lösung des Anfangswertproblems}{}{}
\mathdisp {x' = F(t,x) \text{ mit } x(t_0)=x_0} { , }
wenn
\mathl{\varphi \circ \alpha}{} eine Lösung des Anfangswertproblems
\mathdisp {y' = G(t,y) \text{ mit } y(t_0)= \varphi( x_0)} { }
ist.

}
{} {}






\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{2}
{

Seien \mathkor {} {U_1} {und} {U_2} {} \definitionsverweis {offene Mengen}{}{} in \definitionsverweis {euklidischen Vektorräumen}{}{} \mathkor {} {V_1} {und} {V_2} {.} Es sei \maabbdisp {\varphi} {U_1} {U_2 } {} eine \definitionsverweis {bijektive}{}{} \definitionsverweis {Abbildung}{}{,} die in einem Punkt
\mathl{P \in U_1}{} \definitionsverweis {differenzierbar}{}{} sei derart, dass die Umkehrabbildung in
\mathl{Q=\varphi(P)}{} auch differenzierbar ist. Zeige, dass das \definitionsverweis {totale Differential}{}{}
\mathl{\left(D\varphi\right)_{P}}{} bijektiv ist.

}
{} {}




\inputaufgabe
{3}
{

Es seien \mathkor {} {V_1} {und} {V_2} {} \definitionsverweis {endlichdimensionale}{}{} \definitionsverweis {reelle Vektorräume}{}{,}
\mathl{G \subseteq V_1}{} \definitionsverweis {offen}{}{} und sei \maabbdisp {\varphi} {G} {V_2 } {} eine \definitionsverweis {stetig differenzierbare Abbildung}{}{.} Es sei
\mathl{U \subseteq G}{} eine offene Teilmenge derart, dass für jeden Punkt
\mathl{P \in U}{} das \definitionsverweis {totale Differential}{}{}
\mathl{\left(D\varphi\right)_{P}}{} \definitionsverweis {bijektiv}{}{} ist. Zeige, dass dann das \definitionsverweis {Bild}{}{}
\mathl{\varphi(U)}{} offen in $V_2$ ist.

}
{} {}




\inputaufgabe
{4}
{

Bestimme die \definitionsverweis {Umkehrabbildung}{}{} zur Abbildung \maabbeledisp {} {\R^2} {\R^2 } {(x,y)} {(x+y^2,-y^4-2xy^2-x^2+y^2+x+y) } {.}

}
{} {}




\inputaufgabe
{5}
{

Betrachte die \definitionsverweis {Abbildung}{}{} \maabbeledisp {\varphi} {\R^3} {\R^3 } {(x,y,z)} {(x+y+z,xy+xz+yz,xyz) } {.} Zeige, dass ein Punkt
\mathl{(x,y,z)}{} genau dann ein \definitionsverweis {kritischer Punkt}{}{} von $\varphi$ ist, wenn in
\mathl{(x,y,z)}{} zwei Zahlen doppelt vorkommen.

}
{} {}




\inputaufgabe
{5}
{

Betrachte die \definitionsverweis {Abbildung}{}{} \maabbeledisp {\varphi} {\R^3} {\R^2 } {(x,y,z)} {(x^2-y^2z,y+ \sin xz ) } {.} Zeige, dass die Menge der \definitionsverweis {kritischen Punkte}{}{} von $\varphi$ eine Gerade umfasst, aber auch noch weitere \zusatzklammer {mindestens einen} {} {} Punkte enthält.

}
{} {}




\inputaufgabe
{4}
{

Wir betrachten die Abbildung \maabbeledisp {\varphi} {\R^2} {\R^2 } {(x,y)} {(x,xy) } {.} Bestimme die \definitionsverweis {regulären Punkte}{}{,} die \definitionsverweis {Fasern}{}{  \zusatzklammer {also die Urbilder zu einem Punkt
\mathl{(u,v) \in \R^2}{}} {} {},} das \definitionsverweis {Bild}{}{} und das Bild aller regulären Punkte dieser Abbildung. Man gebe möglichst große offene Mengen
\mathl{U_1 , U_2 \subseteq \R^2}{} derart an, dass \maabbdisp {\varphi {{|}}_{U_1}} {U_1} {U_2 } {} ein \definitionsverweis {Diffeomorphismus}{}{} ist.

}
{} {}




\inputaufgabe
{4}
{

Es seien
\mathl{U_1,U_2 \subseteq \R^k}{} und
\mathl{V_1,V_2 \subseteq \R^n}{} \definitionsverweis {offene Teilmengen}{}{} mit
\mathl{0 \in V_1,V_2}{} und es sei \maabbdisp {\varphi} {U_1 \times V_1} {U_2 \times V_2 } {} ein \definitionsverweis {Diffeomorphismus}{}{,} der eine \definitionsverweis {Bijektion}{}{} zwischen \mathkor {} {U_1 \times \{0\}} {und} {U_2 \times \{0\}} {} induziert. Zeige, dass dann auch die Einschränkung von $\varphi$ auf
\mathl{U_1 \cong U_1 \times \{0\}}{} nach
\mathl{U_2 \cong U_2 \times \{0\}}{} ein Diffeomorphismus ist.

}
{} {}




\inputaufgabe
{3}
{

Beschreibe das komplexe Potenzieren \maabbeledisp {} {{\mathbb C}} {{\mathbb C} } {z} {z^n } {,} in \definitionsverweis {Polarkoordinaten}{}{.}

}
{} {}