Kurs:Vector bundles, forcing algebras and local cohomology (Medellin 2012)/Lecture 9/latex

Aus Wikiversity

\setcounter{section}{9}






\zwischenueberschrift{Plus closure in dimension two}

Let $K$ be a field and let $R$ be a normal two-dimensional standard-graded domain over $K$ with corresponding smooth projective curve $C$. A homogeneous ${\mathfrak m}$-primary ideal with homogeneous ideal generators
\mathl{f_1 , \ldots , f_n}{} and another homogeneous element $f$ of degree $m$ yield a cohomology class
\mavergleichskettedisp
{\vergleichskette
{ c }
{ =} { \delta(f) }
{ =} { H^1(C, \operatorname{Syz} { \left( f_1 , \ldots , f_n \right) } (m)) }
{ } { }
{ } { }
} {}{}{.} Let
\mathl{T(c)}{} be the corresponding torsor. We have seen that the affineness of this torsor over $C$ is equivalent to the affineness of the corresponding torsor over
\mavergleichskette
{\vergleichskette
{ D( {\mathfrak m} ) }
{ \subseteq }{ \operatorname{Spec} { \left( R \right) } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Now we want to understand what the property
\mavergleichskette
{\vergleichskette
{ f }
{ \in }{ I^+ }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} means for $c$ and for
\mathl{T(c)}{.} Instead of the plus closure we will work with the \stichwort {graded plus closure} {}
\mathl{I^{+ \text{gr} }}{,} where
\mavergleichskette
{\vergleichskette
{ f }
{ \in }{ I^{+ \text{gr} } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} holds if and only if there exists a finite graded extension
\mavergleichskette
{\vergleichskette
{ R }
{ \subseteq }{ S }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} such that
\mavergleichskette
{\vergleichskette
{ f }
{ \in }{ IS }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} The existence of such an $S$ translates into the existence of a finite morphism \maabbdisp {\varphi} {C'= \operatorname{Proj} { \left( S \right) } } { \operatorname{Proj} { \left( R \right) } = C } {} such that
\mavergleichskette
{\vergleichskette
{ \varphi^*(c) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Here we may assume that $C'$ is also smooth. Therefore we discuss the more general question when a cohomology class
\mavergleichskette
{\vergleichskette
{ c }
{ \in }{ H^1(C, {\mathcal S} ) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} where ${\mathcal S}$ is a locally free sheaf on $C$, can be annihilated by a finite morphism \maabbdisp {} {C'} {C } {} of smooth projective curves. The advantage of this more general approach is that we may work with short exact sequences \zusatzklammer {in particular, the sequences coming from the Harder-Narasimhan filtration} {} {} in order to reduce the problem to semistable bundles which do not necessarily come from an ideal situation.





\inputfaktproof
{Projektive Kurve/Vektorbündel/Kohomologieklasse/Endliche Annulierung und Kurven im Torsor/Fakt/en}
{Lemma}
{}
{

\faktsituation {Let $C$ denote a smooth projective curve over an algebraically closed field $K$, let $\mathcal S$ be a locally free sheaf on $C$ and let
\mavergleichskette
{\vergleichskette
{ c }
{ \in }{ H^1(C,{\mathcal S}) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} be a cohomology class with corresponding torsor
\mathl{T \rightarrow C}{.} Then the following conditions are equivalent.}
\faktfolgerung {\aufzaehlungzwei {There exists a finite morphism \maabbdisp {\varphi} {C'} {C } {} from a smooth projective curve $C'$ such that
\mavergleichskette
{\vergleichskette
{ \varphi^*(c) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} } {There exists a projective curve
\mavergleichskette
{\vergleichskette
{ Z }
{ \subseteq }{ T }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }}
\faktzusatz {}
\faktzusatz {}

}
{

If (1) holds, then the pull-back
\mavergleichskette
{\vergleichskette
{ \varphi^*(T) }
{ = }{ T \times_C C' }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} is trivial \zusatzklammer {as a torsor} {} {,} as it equals the torsor given by
\mavergleichskette
{\vergleichskette
{\varphi^*(c) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Hence
\mathl{\varphi^*(T)}{} is isomorphic to a vector bundle and contains in particular a copy of $C'$. The image $Z$ of this copy is a projective curve inside $T$.

If (2) holds, then let $C'$ be the normalization of $Z$. Since $Z$ dominates $C$, the resulting morphism \maabbdisp {\varphi} {C'} {C } {} is finite. Since this morphism factors through $T$ and since $T$ annihilates the cohomology class by which it is defined, it follows that
\mavergleichskette
{\vergleichskette
{ \varphi^*(c) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}


We want to show that the cohomological criterion for \zusatzklammer {non} {} {-}affineness of a torsor along the Harder-Narasimhan filtration of the vector bundle also holds for the existence of projective curves inside the torsor, under the condition that the projective curve is defined over a finite field. This implies that tight closure is \zusatzklammer {graded} {} {} plus closure for graded ${\mathfrak m}$-primary ideals in a two-dimensional graded domain over a finite field.






\zwischenueberschrift{Annihilation of cohomology classes of strongly semistable sheaves}

We deal first with the situation of a strongly semistable sheaf ${\mathcal S}$ of degree $0$. The following two results are due to Lange and Stuhler \cite{langestuhler}. We say that a locally free sheaf is \stichwort {\'{e}tale trivializable} {} if there exists a finite \'{e}tale morphism \maabb {\varphi} {C'} {C } {} such that
\mavergleichskette
{\vergleichskette
{ \varphi^*( {\mathcal S} ) }
{ \cong }{ {\mathcal O}_{ C' }^r }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Such bundles are directly related to linear representations of the \'{e}tale fundamental group.




\inputfakt{Endlicher Körper/Glatte projektive Kurve/Vektorbündel/Etale trivialisierbar und Frobenius Periodizität/Fakt/en}{Lemma}{} {

\faktsituation {Let $K$ denote a \definitionsverweis {finite field}{}{} \zusatzklammer {or the algebraic closure of a finite field} {} {} and let $C$ be a smooth projective curve over $K$. Let ${\mathcal S}$ be a locally free sheaf over $C$.}
\faktfolgerung {Then ${\mathcal S}$ is \'{e}tale trivializable if and only if there exists some $n$ such that
\mavergleichskette
{\vergleichskette
{ F^{n*} {\mathcal S} }
{ \cong }{ {\mathcal S} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\faktzusatz {}
\faktzusatz {}

}





\inputfaktproof
{Endlicher Körper/Projektive glatte Kurve/Vektorbündel/Stark semistabil Grad 0/Trivialisierbar/Fakt/en}
{Theorem}
{}
{

\faktsituation {Let $K$ denote a \definitionsverweis {finite field}{}{} \zusatzklammer {or the algebraic closure of a finite field} {} {} and let $C$ be a smooth projective curve over $K$. Let ${\mathcal S}$ be a strongly semistable locally free sheaf over $C$}
\faktvoraussetzung {of degree $0$.}
\faktfolgerung {Then there exists a finite morphism \maabbdisp {\varphi} {C' } {C } {} such that
\mathl{\varphi^*({\mathcal S})}{} is trivial.}
\faktzusatz {}
\faktzusatz {}

}
{

We consider the family of locally free sheaves
\mathbed {F^{e*}({\mathcal S})} {}
{e \in \N} {}
{} {} {} {.} Because these are all semistable of degree $0$, and defined over the same finite field, we must have \zusatzklammer {by the existence of the moduli space for vector bundles} {} {} a repetition, i.e.
\mavergleichskettedisp
{\vergleichskette
{ F^{e*}({\mathcal S}) }
{ \cong} { F^{e'*}({\mathcal S}) }
{ } { }
{ } { }
{ } { }
} {}{}{} for some
\mavergleichskette
{\vergleichskette
{ e' }
{ > }{ e }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} By Lemma 9.2 the bundle
\mathl{F^{e*}({\mathcal S})}{} admits an \'{e}tale trivialization \maabb {\varphi} {C'} {C } {.} Hence the finite map
\mathl{F^{e} \circ \varphi}{} trivializes the bundle.

}





\inputfaktproof
{Endlicher Körper/Projektive glatte Kurve/Vektorbündel/Stark semistabil Grad nichtnegativ/Endliche Annulation/Fakt/en}
{Theorem}
{}
{

\faktsituation {Let $K$ denote a \definitionsverweis {finite field}{}{} \zusatzklammer {or the algebraic closure of a finite field} {} {} and let $C$ be a smooth projective curve over $K$. Let ${\mathcal S}$ be a strongly semistable locally free sheaf over $C$}
\faktvoraussetzung {of nonnegative degree and let
\mavergleichskette
{\vergleichskette
{ c }
{ \in }{ H^1(C, {\mathcal S} ) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} denote a cohomology class.}
\faktfolgerung {Then there exists a finite morphism \maabbdisp {\varphi} {C' } {C } {} such that
\mathl{\varphi^*(c)}{} is trivial.}
\faktzusatz {}
\faktzusatz {}

}
{

If the degree of ${\mathcal S}$ is positive, then a Frobenius pull-back
\mathl{F^{e*}({\mathcal S})}{} has arbitrary large degree and is still semistable. By Serre duality we get that
\mavergleichskette
{\vergleichskette
{ H^1(C, F^{e*}({\mathcal S})) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} So in this case we can annihilate the class by an iteration of the Frobenius alone.

So suppose that the degree is $0$. Then there exists by Theorem 9.3 a finite morphism which trivializes the bundle. So we may assume that
\mavergleichskette
{\vergleichskette
{ {\mathcal S} }
{ \cong }{ {\mathcal O}_{ C }^r }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Then the cohomology class has several components
\mavergleichskette
{\vergleichskette
{ c_i }
{ \in }{ H^1( C, {\mathcal O}_{ C } ) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} and it is enough to annihilate them separately by finite morphisms. But this is possible by the parameter theorem of K. Smith \cite{smithparameter} \zusatzklammer {or directly using Frobenius and Artin-Schreier extensions} {} {.}

}






\zwischenueberschrift{The general case}

We look now at an arbitrary locally free sheaf ${\mathcal S}$ on $C$, a smooth projective curve over a finite field. We want to show that the same numerical criterion \zusatzklammer {formulated in terms of the Harder-Narasimhan filtration} {} {} for non-affineness of a torsor holds also for the finite annihilation of the corresponding cohomomology class \zusatzklammer {or the existence of a projective curve inside the torsor} {} {.}





\inputfaktproof
{Endlicher Körper/Projektive glatte Kurve/Vektorbündel/Endliche Annulation/Harder-Narasimhan-Kriterium/Fakt/en}
{Theorem}
{}
{

\faktsituation {Let $K$ denote a \definitionsverweis {finite field}{}{} \zusatzklammer {or the algebraic closure of a finite field} {} {} and let $C$ be a smooth projective curve over $K$. Let ${\mathcal S}$ be a locally free sheaf over $C$ and let
\mavergleichskette
{\vergleichskette
{ c }
{ \in }{ H^1(C, {\mathcal S} ) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} denote a cohomology class. Let
\mavergleichskette
{\vergleichskette
{ {\mathcal S}_1 }
{ \subset }{ \ldots }
{ \subset }{ {\mathcal S}_t }
{ }{ }
{ }{ }
} {}{}{} be a strong Harder-Narasimhan filtration of
\mathl{F^{e*}({\mathcal S})}{.} We choose $i$ such that
\mathl{{\mathcal S}_{i}/{\mathcal S}_{i-1}}{} has degree $\geq 0$ and that
\mathl{{\mathcal S}_{i+1}/{\mathcal S}_{i}}{} has degree $< 0$. We set
\mavergleichskette
{\vergleichskette
{ {\mathcal Q} }
{ = }{ F^{e*}({\mathcal S})/ {\mathcal S}_i }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\faktfolgerung {Then the following are equivalent. \aufzaehlungzwei {The class $c$ can be annihilated by a finite morphism. } {Some Frobenius power of the image of
\mathl{F^{e*}(c)}{} inside
\mathl{H^1(C, {\mathcal Q} )}{} is $0$. }}
\faktzusatz {}
\faktzusatz {}

}
{

Suppose that (1) holds. Then the torsor is not affine and hence by Theorem 8.7 also (2) holds.

So suppose that (2) is true. By applying a certain power of the Frobenius we may assume that the image of the cohomology class in ${\mathcal Q}$ is $0$. Hence the class stems from a cohomology class
\mavergleichskette
{\vergleichskette
{ c_i }
{ \in }{ H^1(C, {\mathcal S}_i) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} We look at the short exact sequence
\mathdisp {0 \longrightarrow {\mathcal S}_{i-1} \longrightarrow {\mathcal S}_{i} \longrightarrow {\mathcal S}_{i}/ {\mathcal S}_{i-1} \longrightarrow 0} { , }
where the sheaf of the right hand side has a nonnegative degree. Therefore the image of $c_i$ in
\mathl{H^1(C, {\mathcal S}_{i}/ {\mathcal S}_{i-1})}{} can be annihilated by a finite morphism due to Theorem 9.4. Hence after applying a finite morphism we may assume that $c_i$ stems from a cohomology class
\mavergleichskette
{\vergleichskette
{ c_{i-1} }
{ \in }{ H^1(C,{\mathcal S}_{i-1} ) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Going on inductively we see that $c$ can be annihilated by a finite morphism.

}





\inputfaktproof
{Endlicher Körper/Projektive glatte Kurve/Vektorbündel/Affinität und Nichtexistenz von Kurven/Fakt/en}
{Theorem}
{}
{

\faktsituation {Let $C$ denote a smooth projective curve over the algebraic closure of a finite field $K$, let ${\mathcal S}$ be a locally free sheaf on $C$ and let
\mavergleichskette
{\vergleichskette
{ c }
{ \in }{ H^1(C, {\mathcal S}) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} be a cohomology class with corresponding torsor
\mathl{T \rightarrow C}{.}}
\faktfolgerung {Then $T$ is affine if and only if it does not contain any projective curve.}
\faktzusatz {}
\faktzusatz {}

}
{

Due to Theorem 8.7 and Theorem 9.5, for both properties the same numerical criterion does hold.

}


These results imply the following theorem in the setting of a two-dimensional graded ring.


\inputfakt{Tight closure/Plus closure/2 dim, standard-graded/Brenner/Fakt/en}{Theorem}{} {

\faktsituation {Let $R$ be a standard-graded, two-dimensional normal domain over \zusatzklammer {the algebraic closure of} {} {} a finite field. Let $I$ be an $R_+$-primary graded ideal.}
\faktfolgerung {Then
\mavergleichskettedisp
{\vergleichskette
{ I^* }
{ =} { I^+ }
{ } { }
{ } { }
{ } { }
} {}{}{.}}
\faktzusatz {}
\faktzusatz {}

}

This is also true for non-primary graded ideals and also for submodules in finitely generated graded submodules. Moreover, G. Dietz  \cite{dietztight} has shown that one can get rid also of the graded assumption \zusatzklammer {of the ideal or module, but not of the ring} {} {.} Pdf-version