Lineare Gleichung/Zwei Variablen/Parameter/Trivialisierung/Beispiel

Aus Wikiversity

Wir betrachten die allgemeine reelle lineare Gleichung

in den Variablen und den Parametern , die als unbestimmte Koeffizienten der linearen Gleichung dienen. Wir möchten den Lösungsraum

in Abhängigkeit von den Parametern verstehen. Ein Extremfall liegt bei vor, dann ist die Gleichung für beliebige erfüllt und der Lösungsraum ist der volle zweidimensionale . Bei ist der Lösungsraum eindimensional, und ein Basisvektor für diese Lösungsgerade ist durch gegeben. Insbesondere kann man den Lösungsraum über dem Parameterraum pauschal beschreiben, es ist

Eine kompaktere Interpretation dieses Sachverhaltes ergibt sich, wenn man den Gesamtlösungsraum der Gleichung als

ansetzt. Man beachte, dass kein linearer Untervektorraum des ist. Der Lösungsraum zu einem speziellen Parameterwert ergibt sich daraus, wenn man mit den affinen Ebenen schneidet. Unter der Gesamtabbildung

ist die Faser zu . Im Gesamtlösungsraum ist die Variation der Lösungsgeraden in Abhängigkeit vom Parameter und die Degenerierung zu einer Lösungsebene über dem Nullpunkt sichtbar. Das Verhalten außerhalb des Parameternullpunktes wird durch die eingeschränkte Abbildung

beschrieben. Jede Faser dieser eingeschränkten Projektion ist der eindimensionale Lösungsraum. Ferner gibt es eine bijektive Abbildung

die für jeden Parameter linear ist. Links steht ein direktes Produkt aus dem Basisraum und der Faser , die unabhängig vom Basispunkt ist, und rechts steht eine Familie von variierenden Geraden im , doch die angegebene Bijektion zeigt, dass man das eine in das andere übersetzen kann.