Logik/Vollständigkeitssatz/Maximalisierung/Abzählbarer Fall/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

Da abzählbar ist, ist auch abzählbar. Es sei , , eine Abzählung sämtlicher Ausdrücke aus . Wir definieren induktiv eine aufsteigende Folge von Ausdrucksmengen durch und

Wir setzen

Diese Menge ist widerspruchsfrei, da andernfalls schon eines der widersprüchlich wäre, was aufgrund der induktiven Definition nicht der Fall ist. Um zu zeigen, dass maximal widerspruchsfrei ist, sei . Da in der Abzählung der Ausdrücke vorkommt, ist für ein gewisses . Im -ten Konstruktionsschritt wurde nicht hinzugenommen, sonst wäre . Also ist widersprüchlich und damit ist auch widersprüchlich.