Zum Inhalt springen

Mathematik für Anwender 1/Gemischte Satzabfrage/18/Aufgabe/Lösung

Aus Wikiversity


  1. Es seien und konvergente Folgen in . Dann ist die Folge ebenfalls konvergent und es gilt
  2. Das Produkt ist ebenfalls differenzierbar und es gilt
  3. Bei der Korrespondenz zwischen linearen Abbildungen und Matrizen entsprechen sich die Hintereinanderschaltung von linearen Abbildungen und die Matrizenmultiplikation. Damit ist folgendes gemeint: es seien Vektorräume über einem Körper mit Basen

    Es seien

    lineare Abbildungen. Dann gilt für die beschreibenden Matrizen von und der Hintereinanderschaltung die Beziehung