Mathematische Probleme/Beispiel Primzahlzwillinge/Einführung/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Die treibende Kraft der Mathematik ist es, Probleme zu lösen. Schwierige Probleme gibt es in allen Bereichen der Mathematik, besonders prägnant sind sie in der Zahlentheorie, da es dort eine Vielzahl von elementar formulierten ungelösten Problemen gibt. Als Beispiel besprechen wir das Problem der Primzahlzwillinge, zu dem es vor einigen Jahren (2013) einen wichtigen Fortschritt gab.


Definition  

Ein Primzahlzwilling ist ein Paar bestehend aus und , wobei diese beiden Zahlen Primzahlen sind.

Die ersten Beispiele für Primzahlzwillinge sind

Übrigens ist der einzige Primzahldrilling, siehe Aufgabe.


Problem  

Gibt es unendlich viele Primzahlzwillinge?

Eine Lösung dieses Problems wäre ein mathematischer Satz, der entweder besagt, dass es unendlich viele Primzahlzwillinge gibt, oder dass es nur endlich viele Primzahlzwillinge gibt. D.h. das eine oder das andere müsste bewiesen werden. Bei schwierigen Problemen erwartet man nicht, dass jemand plötzlich einen Beweis hinschreibt, sondern dass eine neue und weit verzweigte Theorie entwickelt wird, mit der man letztlich einen Beweis geben kann.

Bemerkung  

Die Frage, ob es unendlich viele Primzahlzwillinge gibt, besitzt verschiedene schwächere Varianten. Man kann sich zum Beispiel fragen, ob es unendlich oft vorkommt, dass es in einem Zehnerintervall zwei Primzahlen gibt, oder dass es in einem Hunderterintervall zwei Primzahlen gibt, und so weiter. Die ersten Primzahlen vermitteln dabei ein Bild, dass Primzahlen ziemlich häufig sind. Sie werden aber zunehmend seltener, so dass es für hohe Hunderterintervalle, sagen wir für die Zahlen von

ziemlich unwahrscheinlich ist, eine Primzahl zu enthalten, geschweige denn zwei Primzahlen. Bis vor kurzem war es nicht bekannt, ob es überhaupt eine Zahl mit der Eigenschaft gibt, dass es unendlich viele Intervalle der Länge gibt, die zwei Primzahlen enthalten ( wäre die positive Lösung des Primzahlzwillingsproblems). Im Jahr 2013 bewies Zhang Yitang, dass man

nehmen kann, dass es also unendlich viele Intervalle der Form
gibt, in denen zwei Primzahlen liegen. Dieses Resultat ist ein Durchbruch in der Primzahlzwillingforschung, da es erstmals zeigt, dass sich Primzahlen unendlich oft „ziemlich nahe“ kommen. Zwischenzeitlich wurde die Schranke von auf gesenkt, siehe [1].