Zum Inhalt springen

Mengen/Konstruktionen/Textabschnitt

Aus Wikiversity

Die meisten Mengen in der Mathematik ergeben sich ausgehend von einigen wenigen Mengen wie beispielsweise den endlichen Mengen und durch bestimmte Konstruktionen von neuen Mengen aus schon bekannten oder schon zuvor konstruierten Mengen.[1] Wir definieren:[2]


Es seien zwei Mengen und gegeben. Dann nennt man die Menge

die Produktmenge[3] der beiden Mengen.

Die Elemente der Produktmenge nennt man Paare und schreibt . Dabei kommt es wesentlich auf die Reihenfolge an. Die Produktmenge besteht also aus allen Paarkombinationen, wo in der ersten Komponente ein Element der ersten Menge und in der zweiten Komponente ein Element der zweiten Menge steht. Zwei Paare sind genau dann gleich, wenn sie in beiden Komponenten gleich sind.

Bei einer Produktmenge können natürlich auch beide Mengen gleich sein, beispielsweise ist die reelle Ebene. In diesem Fall ist es verlockend, die Reihenfolge zu verwechseln, und also besonders wichtig, darauf zu achten, dies nicht zu tun. Wenn es in der ersten Menge Elemente und in der zweiten Menge Elemente gibt, so gibt es in der Produktmenge Elemente. Wenn eine der beiden Mengen leer ist, so ist auch die Produktmenge leer. Man kann auch für mehr als nur zwei Mengen die Produktmenge bilden, worauf wir bald zurückkommen werden.


Es sei die Menge aller Vornamen (sagen wir der Vornamen, die in einer bestimmten Grundmenge an Personen wirklich vorkommen) und die Menge aller Nachnamen. Dann ist

die Menge aller Namen. Elemente davon sind in Paarschreibweise beispielsweise , und . Aus einem Namen lässt sich einfach der Vorname und der Nachname herauslesen, indem man entweder auf die erste oder auf die zweite Komponente des Namens schaut. Auch wenn alle Vornamen und Nachnamen für sich genommen vorkommen, so muss natürlich nicht jeder daraus gebastelte mögliche Name wirklich vorkommen. Bei der Produktmenge werden eben alle Kombinationsmöglichkeiten aus den beiden beteiligten Mengen genommen.



Ein Schachbrett (genauer: die Menge der Felder auf einem Schachbrett, auf denen eine Figur stehen kann) ist die Produktmenge

Jedes Feld ist ein Paar, beispielsweise . Da die beteiligten Mengen verschieden sind, kann man statt der Paarschreibweise einfach schreiben. Diese Notation ist der Ausgangspunkt für die Beschreibung von Stellungen und von ganzen Partien.


Wenn zwei geometrische Punktmengen und gegeben sind, beispielsweise als Teilmengen einer Ebene , so kann man die Produktmenge als Teilmenge von auffassen. Dadurch entsteht ein neues geometrisches Gebilde, das man manchmal auch in einer kleineren Dimension realisieren kann.


Ein Zylindermantel ist die Produktmenge aus einem Kreis und einer Strecke

Es sei ein Kreis, worunter wir die Kreislinie verstehen, und eine Strecke. Der Kreis ist eine Teilmenge einer Ebene und die Strecke ist eine Teilmenge einer Geraden , sodass für die Produktmenge die Beziehung

gilt. Die Produktmenge stellt man sich als einen dreidimensionalen Raum vor, und darin ist die Produktmenge ein Zylindermantel.


Eine andere wichtige Konstruktion, um aus einer Menge eine neue Menge zu erhalten, ist die Potenzmenge.


Zu einer Menge nennt man die Menge aller Teilmengen von die Potenzmenge von . Sie wird mit

bezeichnet.

Es ist also

Wenn die Menge der Kursteilnehmer ist, so kann man sich jede Teilmenge als eine kursinterne Party vorstellen, zu der eine gewisse Auswahl an Leuten hingeht (es werden also die Partys mit den anwesenden Leuten identifiziert). Die Potenzmenge ist dann die Menge aller möglichen Partys. Wenn eine Menge Elemente besitzt, so besitzt ihre Potenzmenge Elemente.

Fußnoten
  1. Darunter fallen auch der Schnitt und die Vereinigung, doch bleiben diese innerhalb einer vorgegebenen Grundmenge, während es hier um Konstruktionen geht, die darüber hinaus gehen.
  2. Definitionen werden in der Mathematik zumeist als solche deutlich herausgestellt und bekommen eine Nummer, damit man auf sie einfach Bezug nehmen kann. Es wird eine Situation beschrieben, bei der die verwendeten Begriffe schon zuvor definiert worden sein mussten, und in dieser Situation wird einem neuen Konzept ein Name (eine Bezeichnung) gegeben. Dieser Name wird kursiv gesetzt. Man beachte, dass das Konzept auch ohne den neuen Namen formulierbar ist, der neue Name ist nur eine Abkürzung für das Konzept. Sehr häufig hängen die Begriffe von Eingaben ab, wie den beiden Mengen in dieser Definition. Bei der Namensgebung herrscht eine gewisse Willkür, sodass die Bedeutung der Bezeichnung im mathematischen Kontext sich allein aus der expliziten Definition, aber nicht aus der alltäglichen Wortbedeutung erschließen lässt.
  3. Man spricht auch vom kartesischen Produkt der beiden Mengen.