Es sei ( M , A ) {\displaystyle {}(M,{\mathcal {A}})} ein Messraum, der als abzählbare disjunkte Vereinigung
mit M i ∈ A {\displaystyle {}M_{i}\in {\mathcal {A}}} gegeben ist. Es seien μ i {\displaystyle {}\mu _{i}} , i ∈ I {\displaystyle {}i\in I} , Maße auf ( M i , A | M i ) {\displaystyle {}(M_{i},{\mathcal {A}}{|}_{M_{i}})} . Zeige, dass es ein eindeutiges Maß μ {\displaystyle {}\mu } auf M {\displaystyle {}M} derart gibt, dass die Einschränkungen von μ {\displaystyle {}\mu } auf die ( M i , A | M i ) {\displaystyle {}(M_{i},{\mathcal {A}}{|}_{M_{i}})} mit μ i {\displaystyle {}\mu _{i}} übereinstimmen.