Modallogische Ausdrucksmenge/Keine endliche Realisierung/1/Beispiel
Erscheinungsbild
Wir betrachten für die modallogische Ausdrucksmenge, die durch
gegeben ist. Da sich die Ausdrücke, die innerhalb des -Operators von stehen, gegenseitig ausschließen, braucht man zur Realisierung von mindestens Punkte. Daher ist
nicht durch einen endlichen gerichteten Graphen erfüllbar. Die Ausdrucksmenge ist aber problemlos durch einen unendlichen gerichteten Graphen erfüllbar: Es seien , , die unendlich vielen Welten, in gilt (die Wahrheitsbelegung ist ansonsten unerheblich) und jede Welt sei von jeder Welt aus erreichbar.