Zum Inhalt springen

Monoidringe/Dimension zwei/Whitney Regenschirm/X^2Y-Z^2/Beispiel

Aus Wikiversity

Wir betrachten die algebraische Fläche, die durch die Gleichung

gegeben ist. Wir wollen sie als die Fläche zu einem Monoidring verstehen. Dazu sei

Wegen ist das Quotientengitter (Differenzengruppe). Da ist, muss die Normalisierung von sein. Die drei Erzeuger ergeben einen surjektiven Monoidhomomorphismus

Diese monomiale Abbildung bedeutet geometrisch die Abbildung

Dabei gehen (monomial gesehen) und beide auf das Element , und das liefert die Gleichung , die man natürlich auch direkt ablesen kann.

Man kann die definierende Gleichung auch als ansehen. Von ausgehend wird also ein Quadrat zu adjungiert.