Zum Inhalt springen

Polynom/x^4-x^3/Verlauf/Extrema/Aufgabe/Lösung

Aus Wikiversity


  1. Es ist

    Deshalb gibt es die beiden Nullstellen und .

  2. Wir arbeiten weiter mit der Faktorzerlegung

    Für negatives sind beide Faktoren negativ, daher ist ihr Produkt positiv. Für ist der Faktor positiv und der Faktor negativ, auf diesem Intervall ist also die Funktion negativ. Für sind beide Faktoren positiv und somit ist die Funktion in diesem Abschnitt positiv.

  3. Es ist

    Die Nullstellen der Ableitung sind also und . Bei gibt es kein Extremum, da dort nach Teil (2) ein Übergang von positiv nach negativ stattfindet. Bei ziehen wir die zweite Ableitung heran, diese ist

    und hat wegen

    dort einen positiven Wert. Also liegt in ein lokales Minimum vor, das wegen der Überlegungen aus Teil (2) auch ein absolutes Minimum ist.