Polynomiale Abbildung/x^2 durch 2, x+y/Kritische Punkte/Achsenkreuz/Aufgabe/Lösung

Aus Wikiversity
Zur Navigation springen Zur Suche springen


  1. Die Abbildung ist nicht surjektiv, da beispielsweise nicht erreicht wird.
  2. Die Abbildung ist nicht injektiv, da und beide auf abgebildet werden.
  3. Die -Achse , wird auf , abgebildet, also eine liegende flache nach rechts offene Parabel, die -Achse , wird auf , abgebildet, also auf die -Achse.
  4. Die Jacobi-Matrix ist
  5. Die Determinante der Jacobi-Matrix ist

    die kritischen Punkte sind also die Punkte, wo , also die Punkte auf der -Achse.