Zum Inhalt springen

Polynomring/Verschwindungsordnung/Analogie zu Zahlbereich/Aufgabe

Aus Wikiversity

Es sei , , und . Zeige, dass die folgenden „Ordnungen“ von an der Stelle übereinstimmen.

  1. Die Verschwindungsordnung von an der Stelle , also die maximale Ordnung einer Ableitung mit .
  2. Der Exponent des Linearfaktors in der Zerlegung von in irreduzible Polynome.
  3. Die Ordnung von an der Lokalisierung von am maximalen Ideal .