Prädikatenlogik/Modellbeziehung/Abbildung/Injektiv und surjektiv/Beispiel

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Es sei ein Symbolalphabet, das außer einer Variablenmenge aus einem einzigen einstelligen Funktionssymbol bestehe (die Konstantenmenge und die Relationssymbolmengen seien also leer), so dass eine -Struktur aus einer Menge zusammen mit einer Abbildung

besteht. In einer solchen Interpretation wird jeder -Ausdruck interpretiert. Der Ausdruck

besagt die Surjektivität von . D.h. in einer -Interpretation gilt

genau dann, wenn die durch die Interpretation festgelegte Abbildung surjektiv ist. Der Ausdruck

besagt die Injektivität von . D.h. in einer -Interpretation gilt

genau dann, wenn die durch die Interpretation festgelegte Abbildung injektiv ist.