Zum Inhalt springen

Primfaktorzerlegung/3 Wurzel 9/Irrational/Aufgabe/Lösung

Aus Wikiversity


Nehmen wir an, dass es eine Darstellung

mit positiven natürlichen Zahlen gibt. Wenn und einen gemeinsamen Teiler hat, so können wir mit diesem kürzen und erhalten dann eine Bruchdarstellung mit teilerfremden Zähler und Nenner. Es seien also und teilerfremd. Wir nehmen die dritte Potenz der Anfangsgleichung und erhalten

bzw.

Diese Zahl hat eine eindeutige Primfaktorzerlegung. In ihr kommt vor, sodass und daher ist, da eine Primzahl ist. Also kommt rechterseits mit einem Exponenten in der Primfaktorzerlegung vor, linkerseits aber nur mit dem Exponenten , da kein Vielfaches von ist. Dies ist ein Widerspruch.