Primideal/Vermeidung/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

Wir führen Induktion über . Bei ist die Aussage trivial. Sei die Aussage für Primideale bewiesen, und seien Primideale gegeben. Für jedes können wir annehmen, dass ist, da andernfalls die Aussage nach Induktionsvoraussetzung bewiesen ist. Demnach gibt es jeweils ein mit . Dann muss insbesondere sein. Das Element gehört zu und damit ist auch für ein . Dies ist aber sowohl bei als auch bei ein Widerspruch.