Projekt:Einführung Marktdesign/Übungsaufgaben
Übungsblatt 2: Matching Market Algorithm
[Bearbeiten]Aufgabe 1: One-to-One Matching und Stabilität
[Bearbeiten]a) Wann ist ein Matching stabil ?
Given n men and n women, where each person has ranked all members of the opposite sex with a unique number between 1 and n in order of preference, marry the men and women together such that there are no two people of opposite sex who would both rather have each other than their current partners. If there are no such people, all the marriages are "stable".
Pseudocode des Gale-Shapley Algorithm
/**
function stableMatching {
Initialize all m ∈ M and w ∈ W to free
while ∃ free man m who still has a woman w to propose to {
w = m's highest ranked such woman who he has not proposed to yet
if w is free
(m, w) become engaged
else some pair (m', w) already exists
if w prefers m to m'
(m, w) become engaged
m' becomes free
else
(m', w) remain engaged
}
}
*/
manPref:
- 1 0 3 2 4
- 0 2 1 3 4
- 1 0 4 3 2
- 2 4 1 0 3
- 1 2 0 3 4
womanPref:
- 4 3 0 2 1
- 2 3 0 1 4
- 2 0 4 1 3
- 4 1 2 3 0
- 3 2 4 0 1
Married couples (woman + man):
- 0 + 0
- 1 + 2
- 2 + 4
- 3 + 1
- 4 + 3
Gale-Shapley Algorithmus Animation
Aufgabe 2: One-to-One Matching und DAA
[Bearbeiten]Betrachten Sie den folgenden Heiratsmarkt, in dem die Agenten strikte Präferenzen haben:
- P( ) = , , ,
- P( ) = , , ,
- P( ) = , , ,
- P( ) = , , ,
- P( ) = , , ,
- P( ) = , , ,
- P( ) = , , ,
- P( ) = , , ,
a) Wenden Sie den Gale-Shapley-Algorithmus an, in dem immer die Männer vorschlagen. Was sind die resultierenden Zuordnungen?
b) Wenden Sie den Gale-Shapley-Algorithmus an, in dem immer die Frauen vorschlagen. Was sind die resultierenden Zuordnungen?