Punktierte affine Gerade/Potenzieren/Etale/Beispiel
Zur Navigation springen
Zur Suche springen
Es sei ein algebraisch abgeschlossener Körper und
die punktierte affine Gerade, also die affine Gerade ohne das maximale Ideal . Für jede natürliche Zahl , die kein Vielfaches der Charakteristik von ist, ist die Abbildung
(die dem Einsetzungshomomorphismus zu entspricht) eine endliche étale Abbildung. Dies folgt unmittelbar aus der Ableitung von , da sich aus direkt in ergibt.
Die Automorphismengruppe dieser Überlagerung entspricht den -ten Einheitswurzeln in , wobei eine solche Einheitswurzel auf durch wirkt, und ist daher zu isomorph.