Quadratische Zahlbereiche/Eisenstein-Zahlen und Z(Wurzel -3)/Euklidisch/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

Wie dem Beweis zur Euklidizität der Gaußschen Zahlen zu entnehmen ist, ist für einen Unterring der komplexen Zahlen der Form (mit ) die Norm eine euklidische Funktion genau dann, wenn sich zu jedem Element ein Element findet, das zu einen Abstand kleiner als besitzt. Sei zunächst . Das Element hat den minimalen Abstand zu den vier Gitterpunkten , und dieser ist stets

Für den Ring der Eisenstein-Zahlen sind die Gittermaschen gleichmäßige Dreiecke mit Seitenlänge eins, und jede komplexe Zahl hat zu mindestens einem Gitterpunkt einen Abstand .

Zur bewiesenen Aussage