Quadratwurzel/Entwicklungspunkt 1/Potenzreihenansatz/Aufgabe/Lösung

Aus Wikiversity
Zur Navigation springen Zur Suche springen
  1. Es ist

    daher ist dies die Taylorreihe zur Quadratfunktion im Entwicklungspunkt .

  2. Mit

    ist

    wobei wir zur Vereinfachung gesetzt haben. Die Bedingung

    lautet somit ausgeschrieben

    Daraus können die sukzessive durch Koeffizientenvergleich bestimmt werden, da in der unendlichen Summe nur endlich viele Terme die Koeffizienten bestimmen. Zunächst ergibt sich

    Aus (Koeffizient vor )

    ergibt sich

    Aus (Koeffizient vor )

    ergibt sich

    Aus (Koeffizient vor )

    ergibt sich

    Aus (Koeffizient vor )

    ergibt sich