Quadratwurzel/Höhere Ableitungen/Taylorpolynom/1/Aufgabe/Lösung

Aus Wikiversity
Zur Navigation springen Zur Suche springen
  1. Es ist
  2. Es ist
  3. Wir behaupten

    Dies beweisen wir durch Induktion nach . Der Induktionsanfang ist durch Aufgabenteil (1) gesichert (das leere Produkt ist ). Der Induktionsschluss ergibt sich durch

  4. Das Taylorpolynom vom Grad mit Entwicklungspunkt ist
  5. Aus der Formel für die Ableitungen folgt, dass der -te Koeffizient der Taylorreihe für gleich

    ist, also ist die Taylorreihe gleich

Zur gelösten Aufgabe